
CaveUT 2003

Freeware for Low-Cost Integrated Multi-Screen Displays
Using Unreal Tournament 2003

CaveUT 2003 is a set of modifications allowing the Unreal Tournament 2003 (UT2003)
game engine to display in CAVE-like displays and panoramic digital theaters. It
supports off-axis projection for correct perspective and multiple views from the
observer's viewpoint.

http://www.unrealtournament.com/
http://www.evl.uic.edu/pape/CAVE/

This page provides an introduction to CaveUT2003, including download information,
installation instructions, guidelines for the program's use, explanations of how it works,
and descriptions of improvements planned for the future. CaveUT version 1.2 uses the
older Unreal Tournament in much the same way, and is still available. Some sections of
this documentation use images of CaveUT 1.2 in the general discussion.

All versions of CaveUT is open source and freely available to the public. It works under
all versions of windows and we plan on porting it to Linux.

Page Index

First Looks
 If None Of This Sounds Familiar
 Introduction
 Examples of CaveUT Implementations
Technical Information
 Hardware and Software Requirements
 Physical Setup
 Software and Downloads
 VRGL
 How to Install and Configure CaveUT
 Install Software on Each Client Computer
 Install and Configure the Server
 Start CaveUT For the First Time
 Read This: Perspective
 Configure View Rotations and Offsets
 Configure Perspective Correction

Technical Information (Continued)
 Controlling CaveUT From a TCP Socket
 Interface Options
 Tips and Tricks
 Packing A Portable CaveUT For Air Travel
Ongoing Considerations
 Safety and Motion Sickness
 Known Issues
 Improvements Needed
Background
 Ownership and Distribution
 Credits
Printer-Friendly CaveUT
 Compiled Documentation in .PDF Format

If you have comments about CaveUT or this website, please contact Jeffrey Jacobson.

Last updated January 16, 2004.
URL: http://www.planetjeff.net/ut/CaveUT.html

This page is copyright © 2004 by Jeffrey Jacobson.
See this web site's copyright notice for information

on duplicating or distributing this page or its
contents.

http://www.planetjeff.net/ut/CaveUT_1.2.html
mailto: jeff@planetjeff.net
mailto: jeff@planetjeff.net

If None Of This Sounds Familiar

You may have arrived at this web site via a link, page redirection,
because you were searching for a term that occurs on these pages,
or by accident. In such a case, the information on the top page
describing this web site may be confusing or unhelpful.

CaveUT is software that allows someone to set up a CAVE-like virtual
reality environment.

"CAVE" is a recursive acronym for "CAVE Automatic Virtual
Environment", coined in or near 1991 by Carolina Cruz-Niera, then a
graduate student of Computer Science at the University of Chicago
Illinois. She and her collaborators were the first to make a small room
from (the equivalent of) giant computer monitor screens, using
software to present an immersive view of a virtual environment. In
other words, someone standing in front of the screens of a CAVE-like
display will be able to look up, down, and sideways at the details of
the world the screens show, making the experience far more realistic
than staring at a computer or TV screen.

CAVE-like systems are used to allow people to experience large
environments in a manner similar to walking through and looking at
them. Such systems can be used recreationally (allowing people to
play in computer games such as "first-person shooters") and
educationally (allowing people to experience recreated historical sites,
alien worlds, and the like).

The CAVE acronym is a registered trademark of the Trustees of the
University of Chicago. This has led to all sorts silly permutations for
similar devices. Examples include RAVE, NAVE, BNAVE, Grotto,
Alcove, and CaveUT.

Next: Introduction

Previous: Back to Page Index

Start: Back to Page Index

Last updated January 16, 2004.
URL: http://www.planetjeff.net/ut/CUTIntro1.html

This page is copyright © 2004 by Jeffrey Jacobson.
See this web site's copyright notice for information

on duplicating or distributing this page or its
contents.

mailto: jeff@planetjeff.net

Introduction

CaveUT differs from most CAVE-like setups in a variety of ways, but
the difference that is most significant to many people and institutions
is cost. Even a very elaborate CaveUT setup costs a fraction of what
standard CAVE setups do. This makes CaveUT affordable for
individuals, small companies, and budget-strapped academic
departments.

CaveUT costs so little to implement for these reasons:

● Hardware: CaveUT installations require off-the-shelf personal
computer technology.

● Software: CaveUT requires purchase of licenses to a low-cost "first-
person shooter" game engine and installation of freely-distributable,
zero-cost code provided at this site.

There is no predictable fixed cost for installing a CaveUT setup, but a
ballpark figure for a typical two-screen setup (using all-new
components) is around $12,000 for a portable system utilizing laptops
or around $10,000 for a permanent installation utilizing desktop
computers. The system can easily be expanded, adding one screen
to a portable arrangement for around $6,000 or adding one screen to
a permanent arrangement for around $4,500. These prices assume
that the builder is buying everything new--it is entirely possible to use
borrowed or existing equipment!

Currently, CaveUT offers a (compelling!) monoscopic image and no
head tracking, although stereo and tracking will be added. Compared
to most software authoring environments used in CAVEs, it offers
superior graphics quality and greater ease of content production and
networked communication. Using a true game engine, as CaveUT
does, is best for virtual worlds populated with pre-defined shapes, be
they rigid or flexible. The only situation where it is not appropriate is
for applications (e.g. scientific visualization) where shapes have to be

generated on-the-fly from a data stream or some algorithm.

A detailed account of the costs and setup requirements for an
implementation of CaveUT appears on the Physical Setup page.

How CaveUT Works

Typically, each player of a networked Unreal Tournament 2003
(UT2003) game has a standard desktop computer running Windows,
Linux or MAC's OS-X. Each has a complete installation of the game,
which we'll refer to as a client installation. Each client communicates
over a LAN or through the Internent with the server installation, a
process usually running on a desktops along with a client.

The server maintains the authoritative copy of the virtual world which
all the players share. This allows the players to interact with each
other -- they move and function within the exact same environment,
though each player experiences it from his own perspective.

Each client maintains a complete copy of that world and all the things
in it--including the figures representing each player. (These figures,
referred to as "avatars," are usually, but not always, human.)

Every time a player takes an action, the environment's creatures and
avatars, in the client copy of the virtual world, respond appropriately.
As often a possible, each client tells the server what has changed as
consequences of its player's actions. The server reconciles the
actions of all the players and issues an authoritative update to all
clients, so they all change their copies of the world to reflect the new
state of things. The process is remarkably seamless if the network will
allow these updates to happen frequently enough.

This arrangement has a lot of virtues. It allows for graceful and robust
recovery from unexpected network delays. It also uses the minimum
bandwidth possible, because the server and clients need only
exchange updates, not models or imagery.

How Spectator Mode and Open Source Make CaveUT
Possible

While the
rendering
engine for
UT2003 is
proprietary,
everything
else in the
game's
software is
open source.
This allows a
large
community of fans, programmers and even some scientists to make
changes and distribute them freely, as with CaveUT. UT2003 and its
modifications are available free to the public for most non-commercial
purposes, while Epic Games retains the sole right to make money
from their use.

Rather than showing up with an active avatar in the game, a player
can act as a spectator instead. Using the UT2003 software's "behind
view" option, the spectator player can see through the eyes of any
other player in the game. In each of the installations depicted, here,
there is only one regular player at a time.

Note: The images on this page show the old CaveUT 1.2, adequate for
demonstration purposes.

For simplicity's sake, this documentation will use the following terms
with the following definitions: The player is the person who controls
the character or avatar moving within the virtual world. The operator
is the person who controls the CaveUT computer setup (and may or
may not be the same person as the player). The console is the
computer from which the operator controls CaveUT.

Each desktop computers showing a spectator view is connected to a

digital projector, which projects the view onto one wall.

In the two-
screen
example
showed at
CHI 2002
(shown to the
right), and
with the five-
screen Earth
Theater, all
the views are
front-
projected. In
the four-
screen
BNAVE, the three vertical walls are rear-projected and the one floor
screen is front-projected from overhead.

CaveUT is a set of modifications to UT's open-source game code
which changes the view rotation and perspective correction of a
spectator's view.

In the simplest possible implementation, a CaveUT setup is two-
walled, using the corner of a room as its projection surface.

In the UT2003 software one spectator's view is hacked to look 45
degrees to the right, rather than straight ahead, rather than the
straight-ahead view the console shows. That image is projected on
the screen on to the right of the optimal viewing point. The other
spectator's view is turned 45 degrees to the left and shown on the
wall to the viewer's left. The perspective correction is changed on
each screen to be account for the established viewing point.

This provides a single, contiguous image to the viewer. It is immersive
because the perspective correction is approximately the same as if
the virtual world were real the viewer were seeing it from that location.

http://www.planetjeff.net/ut/CaveUT_Images/UTinET.jpg
http://www.planetjeff.net/ut/CaveUT_Images/UTinET.jpg
http://www.planetjeff.net/ut/CaveUT_Images/UTinBNAVE-Med.jpg
http://www.planetjeff.net/ut/CaveUT_Images/UTinBNAVE-Med.jpg
http://www.planetjeff.net/ut/CaveUT_Images/UTinBNAVE-Med.jpg

As the operator navigates through the virtual world, the view on the
two screens change in lockstep. Using a typical LAN, the client-server
updates can be so quick that there is no latency between the screens.
The game provides nearly thirty frames per second, which is identical
to the refresh rate utilized by commercial television. There is no need
to explicitly synchronize the screen updates when they update so
quickly.

Getting Creative

As you might expect, a CaveUT setup can have many screens.
Currently, UT2003 has a limit of 32 players allowed in any one game,
so it is possible to implement a 31-screen display.

The screens can be oriented in almost any arbitrary orientation and
distance to the player. The screens don't even have to show the same
view! For example, you could build an airplane or even mini-
submarine cockpit simulator with a separate CaveUT view for each
viewport or window. For a driving simulator, you could simulate a rear-
view mirror with a very small CaveUT screen.

It's even possible to have multiple CaveUT instances running in the
same world environment in a fashion similar to several players
participating in a game of Unreal Tournament. The total number of
servers and clients, regardless of how they are divided among
CaveUT instances, count against Unreal Tournament's 32-player limit.

To do this, you would one computer on your network hosting a game;
it would connect more than one CaveUT setup. If a specific CaveUT
setup had four spectator/clients focused on one operator console, this
would use up five players against Unreal Tournament's limit of 32. Six
such setups would account for 30 players of UT's 32-player limit, and
so six different players could interact in the same game environment
while experiencing it through an immersive CaveUT interface.

Next:
Examples of CaveUT
Implementations

Previous: If None Of This Sounds Familiar

Start: Back to Page Index

Last updated January 16, 2004.
URL: http://www.planetjeff.net/ut/CUTIntro2.html

This page is copyright © 2004 by Jeffrey Jacobson.
See this web site's copyright notice for information

on duplicating or distributing this page or its
contents.

mailto: jeff@planetjeff.net

Examples of CaveUT Implementations

BNAVE

CaveUT was originally developed on the BNAVE, a PC-based CAVE-like display the
Medical Virtual Reality Center, Department of Otolaryngology, University of Pittsburgh.

To the right is a picture of the
BNAVE showing DM-Suntemple,
a virtual world that comes
prepackaged with UT. The
screens are at an 80.5-degree
angle to each other, and we are
looking straight into the corner.
(The image looks bent because
the camera taking this picture
could not be placed in the ideal
viewing location; the image does
not appear bent to someone
standing in the correct position
before the screens.)

The BNAVE consists of three
walls arraigned in a "U" around
the viewer. A fourth projection
surface has been added to the
floor.

Each wall is a rear-projection screen. Onto each of the three screens is rear-projected
projected the SVGA output of a dedicated PC.

Mini Cave at VISIC Lab

http://usl.sis.pitt.edu/PlanetJeff/IndexDownloads/VRST-2001.pdf

DM-Antauls DM-Serpentine

Physical Setup

These three images show CaveUT in the "Mini Cave" at the VISIC Lab at the University of
Pittsburgh. The mini-cave is a three-screen affair small enough that all the computers
required to run will it fit on a desktop. Its basic design is much like the BNAVE or any
other generic PC-based cave. The first image shows a virtual world called DM-Antauls.
The second shows a virtual world called DM-Serpentine. The last shows the physical
setup of the computers running the mini-cave.

The VISC Lab also built a complete V-Cave (see below) for more immersive applications.

The Portable V-Cave

http://visc.exp.sis.pitt.edu/

Illustrated here
is the portable
V-Cave, which
was
demonstrated
at CHI 2002
and will be
shown at the
Ultra Unreal
and HFES 46th
meeting
events.

This setup uses
tripod-mounted
projectors to
project onto
screens
stretched from
a collapsible
frame made
from PVC pipe.
The basic
configuration is
much as same
as in Figure
Two.

More screens
can be added
to this
arrangement;
the only limits
are the Unreal
Tournament
2003 limitation
of thirty-one
screens, and
the limits on the
fabrication
skills and
patience of the
people putting
together the
CaveUT setup.

The screens

http://www.sigchi.org/chi2002/
http://www.ultraunreal.com/
http://hfes.org/publications/2002proc.html
http://hfes.org/publications/2002proc.html

can be front or
rear projected,
or can include
some of each.
The only
requirement is
that a user in
the ideal
viewing
location should
not be in the
way of any
projectors.

Earth Theater

The Earth Theater (left) at the
Carnegie Museum of Natural
History has a CaveUT installation.
The theater has a fully digital
display composed of five curved
front-projected screens spanning
210 degrees horizontal and 30
degrees vertical. Five standard
video projectors, each driven by a

PC running windows, produce the Unreal Tournament display. As you would expect, each
of the five projector PCs is running a spectator, which provides the appropriate view from
a single player on a sixth PC.

Interestingly, the careful design of the theater makes off-axis
projection unnecessary. However, the curved screens
require a spherical correction of the image, otherwise we get
those wedge-shaped overlaps you can see in the image if
you look closely. Willem de Jonge are just now working on a
spherical correction to the OpenGL code.

On the right is a Schematic of the Earth Theater. The screen
is a section of a sphere, 210 degrees horizontal by 30 deg
vertical. In the figure, the screen is depicted in a transparent
white in front of the seats.

CLARTE

CLARTE
(www.clarte.
asso.fr) is a
European
research
center
specializing in
immersive
displays for
virtual reality
and advanced
perhipherals
for VR. They
are using
CaveUT in
their SAScube
(www.
sascube.
com) a fully
equipped four-
walled CAVE-
style display.

Their
programmer
and main
contact for
their CaveUT
project is
Marc
LeRenard. He
has already
added
stereographic
(3D) imaging
to the CaveUT
and will soon
add real-time
head and
hand tracking.

http://www.clarte.asso.fr/
http://www.clarte.asso.fr/
http://www.sascube.com/
http://www.sascube.com/
http://www.sascube.com/
mailto:Marc.LERENARD@esiea-ouest.fr
mailto:Marc.LERENARD@esiea-ouest.fr

Next: Hardware and Software Requirements

Previous: Introduction

Start: Back to Page Index

Last updated January 16, 2004.
URL: http://www.planetjeff.net/ut/CaveUT.html

This page is copyright © 2004 by Jeffrey Jacobson.
See this web site's copyright notice for information

on duplicating or distributing this page or its
contents.

mailto: jeff@planetjeff.net

Hardware and Software
Requirements

Unreal Tournament 2003

For each PC in your mini-network, you will have to buy and install a
copy of Unreal Tournament 2003. Copies are available from many
software retailers, including several linked to the Unreal Tournament
web site (click the Buy Now! button in the upper right to reach a
page of online retailers). Be sure to buy Unreal Tournament 2003,
not 2004. UT2004 will not actually be released until mid-March! You
can buy it, but you can't have it....

In addition, for each copy of UT2003, you will need to install the latest
code patch.

Operating System

Unreal Tournament 2003 operates under most modern flavors of
Microsoft Windows (98, ME, 2000, XP) and (soon) Linux. CaveUT's
modified OpenGL code currently works only under Windows, limiting
implementations of CaveUT (for the time being) to that platform.
However, the OpenGL code will soon be ported to Linux, allowing for
CaveUT installations under that OS.

CaveUT's design team will not be porting the code to Macintosh OS
or the Xbox, but would enthusiastically support anyone who wants to
undertake such a project.

All the instructions currently on this web site assume the user is using
some version of MS Windows.

Hardware

CaveUT requires use of multiple PCs that can run Unreal Tournament
2003, which generally means run-of-the-mill PCs with good graphics

http://www.unrealtournament.com/
http://usl.sis.pitt.edu/goshen/PlanetJeff/ut/CaveUT-Downloads/ut2003-winpatch2225.exe

cards.

For details of UT2003's hardware needs, see Epic Games' FAQ
page.

A full CaveUT setup also requires a variety of projector and
networking hardware, depending on how ambitious you are. An
illustrative, simple, example is described in the Physical Setup page.

Next: Physical Setup

Previous: Introduction

Start: Back to Page Index

Last updated January 16, 2004.
URL: http://www.planetjeff.net/ut/CUTReqs.html

This page is copyright © 2004 by Jeffrey Jacobson.
See this web site's copyright notice for information

on duplicating or distributing this page or its
contents.

http://www.ut2003.com/faq.php
mailto: jeff@planetjeff.net

Example
Physical Setup:

The V-Cave
This page has full instructions
for setting up a simple CaveUT
display using two screens.
(Hence the name V-cave,
because the two screens form a
letter "vee".) The methods
shown here generalize easily to more complex multiscreen
arraingements. You can click on most of the illustrations shown below to
bring up larger versions.

Note that some of these instructions will be unclear until you have also
read the pages on software installation.

Using the Corner of a Room

The simplest
physical setup for
a CaveUT display
doesn't require
that you have
screens -- you
simply need the
clean, white
corner of some
room. (In
academic and
packrat
environments,
such a corner will
be difficult to find.)
If the walls are not

Figure One: The Two-Walled CaveUT Display

white you can
cover them with
everything from
paper to screen
material. White
shower curtains
work rather well,
as do very large
pieces of white
paper. The
brighter the
projectors are, the
less pristine the
surfaces need to
be; in the
illustration shown
to the right, the
walls are actually
50% gray!

In this setup, two
digital projectors
are each mounted
on a wall and
pointed into the
corner of a room,
as shown in
Figure One. Each
projector displays
on the wall
perpendicular to
its own. One edge
of each projection
lies along the
corner itself, so
the two images
abut.

If the projectors
are bright enough
and the wall is
both clean and
white, no screen

material is
needed. Otherwise, you can use some covering material like very large
sheets of paper, white foam core, white plastic, or Tyvek®.

Figure Two shows the layout, from overhead, of the components used for
the corner CaveUT setup shown in Figure One. The setup is controlled from
the server computer, labeled "PC Operator Console" on the diagram. From
the Console, data is sent to the Net Hub, and from the hub to each
secondary (client) PC. Each PC runs a client version of Unreal Tournament
2003 in client mode and sends its data, in turn, to the Projector associated
with it. Each Projector displays its portion of the UT2003 player's view to the
corresponding screen (or, in this case, portion of wall).

The setup shown in Figure One has its ideal viewing point, or "sweet spot,"
at the location shown in Figure Two. This gives a viewer there approximately
100 degrees of horizontal FOV.

Note that
the setup
shown in
Figure
One
differs
from the
diagram
slightly: Its the projectors are not turned
sideways. One is on top of a bookshelf and the other hangs upside-down
from hooks in the ceiling, as shown to right, demonstrations of the ways one
can (and often must) improvise when accommodating a CaveUT setup to its
environment.

Necessary Components

Following is an inventory of the parts used for the two-walled V-Cave
(which was described on the Examples of CaveUT Implementations
page, excluding the projection surface. In many cases, setting up an
implementation of CaveUT can require even fewer materials, and should
not require more.

Standard 100mbps Unmanaged Ethernet Hub ($50-$100)

It's fine to purchase an inexpensive hub (which is also sometimes called
a "Network Switch"), but be sure to get one that is physically rugged,
particularly if the CaveUT setup is to be regularly transported.

Four 25' 10-based-T LAN cables and One Coupler ($100)

These cables are also often labeled as "RJ45 CAT-5e Patch Cables" or
something similar. These lengths are sufficient for a CaveUT setup like
the one shown in Figures One and Two; a more ambitious setup, or one
where the console and client PCs are set up well away from the screens,
will call for longer cables.

Three Standard 25' Power Cords And Two Surge-Protected Power

Strips ($60)

Be sure to plug everything into the surge protectors for the safety of the
equipment. It's also important to be sure its the surge protectors are of a
good, reliable brand. If the CaveUT setup is to be regularly transported,
it's also helpful to have protectors that are physically light and small.

You could even choose to use an Uninterruptible Power Supply (a UPS)
if you are uncertain about the quality or stability of your power supply.

Three Desktop Computers (Approximately $1500 to $2500) or,
Three Laptop Computers (Approximately $4000 to $7000)

Desktop computers are best-suited to a CaveUT implementation that is
intended to stay in one specific location; laptops are better suited to
implementations that will be moved on a regular basis (such as for
computer and trade shows, for demonstrations at various schools and
college departments, etc.).

Regardless of whether the machines are desktops or laptops, they
should be fairly robust, in terms of graphics cards and processor speeds,
to produce the best graphics performance.

The V-Cave shown in Figure 1 utilized two Pentium 4 1.1GHz laptops,
with substantial amounts of RAM and geForce2 cards, for the client
machines; they were operated at 1024x768 resolution. The console
laptop was much more modest, a Pentium 3 800MHz machine with
128Meg RAM, running Windows NT.

Typically, the console machine only has to be strong enough to provide
smooth interaction.

The machines mentioned above are more than enough for showing off
CAD models. If a CaveUT setup shows off lots of human figures, or very
complex models, a falloff in performance may result. (Should this
happen, and should no more robust hardware be immediately available,
a useful trick is to reduce the Unreal Tournament 2003 resolution and
rendering quality values.)

The client machines must be running Windows, at least until the Linux
port is done. However, the server machine can run MAC-OS, Windows,

or Linux, and it only has to be fast enough to provide smooth interaction
between the machines in the network.

A Spare Keyboard and Two Keyboard Extension Cords ($35)

This extra keyboard is the input device used by the player to navigate
and interact with the virtual world. A CaveUT setup can use any kind of
control device -- keyboard, joystick, trackball, or other favorite game
peripheral.

The extra extension cords are recommended for a setup in which the
player is also the operator; it gives the player/operator much more
freedom of movement, which is particularly useful during demonstrations
and presentations.
Two Tripods ($200+)

The tripods are used to hold up
the projectors. It's important to
purchase sturdy, good-quality
tripods; cheaper ones will be
flimsy. Though they may be
capable of holding up the
projectors' weight, they may bend
or be unbalanced, denying the
CaveUT setup their full range of
motion.

Typically, a good tripod (about
$100 and up) has a simple
platform (the head) with a slot in it
and a single bolt. Attach the
projector onto the bolt, and the
tripod both holds the projector
and allows it to be angled it in any
direction. The stronger the tripod
and the lighter the projector, the
easier it will be to make fine-
tuned adjustments.

Make sure that after the projector

is mounted on the tripod, the
tripod can rotate the projector a
full 90 degrees to the right and a
full 90 degrees to the left. This
capability is needed for situations
in which the projectors will need
to be mounted sideways, so that
the projection area can be taller
than it is wide.

Two Digital Projectors (Approximately $7000)

Important Note: It is critical that small projectors, those weighing nine
pounds or less, be purchasd for a CaveUT setup. Small projectors are:

● Easier to mount
● Possible to turn sideways
● Easier to transport
● Less prone to falling over atop their tripods when bumped by a passer-

by, costing thousands of dollars to replace
● Much, much better at heat dissipation (they have powerful fans built

into them which will keep their internal components cool at any
orientation; some larger models will overheat and burn out if they are
held sideways and run long enough)

Warning: just because a projector can be turned upside-down to be
ceiling mounted does not mean it can be turned sideways; some are
engineered so that air will flow them correctly when they are upside-
down but not when they are sideways.

A
Tangent
on
Keystone
Correction:
Most
commercially
available projectors have a lens inside them which introduces a keystone
correction. This causes the beam to spread upward as shown in the

illustration to the right. In the illustration, the left-hand projector has its
beam configured normally; the right-hand projector has its keystone
correction implemented, giving it a lop-sided projection beam.

This feature of projectors allows a projector to be set up on a conference
room table and have its display shown on the wall without the projector
having to be propped up on books or other elevators.

This feature is a very good thing. It allows for the arrangement shown in
Figure Two. With the projectors turned sideways and keystone correction
implemented, the projection beams allow the viewer to stand about as
close as most people ever want to. In general, this it feature provides a
CaveUT implementation with two possible locations for a projector to
project onto a particular screen.In the boardroom example, an upside-
down projector, mounted on the ceiling, could project onto the same
screen as it would if it were just sitting on the main table. Said another
way, the keystone correction for a sideways mounted projector can be
made to go left or right simply by rotating the projector 180-degrees. In
fact, the two projectors in the V-Cave are turned sideways in opposite
directions.

Without this advantage, the BNAVE could never have been made as
large as it is, given its space constraints.

Materials for Mounting Plates for The Two Projectors (Cost
Negligible)

The projectors need to be
attached to the tripods. Most
projectors are designed with
some means to mount them
upside-down from a ceiling; most
have threaded bolt-holes cut
directly into the projector case.
This is a flimsy arrangement,
particularly since the projector
cases are often made of plastic.
It's much better to spend a little time making mounting plates that attach
directly to the projector case, then attach the tripods to those mounting
plates.

http://usl.sis.pitt.edu/PlanetJeff/IndexDownloads/VRST-2001.pdf

The figure to the right shows a projector with its mounting plate attached.

(It's also true that for most projectors, mounting brackets are available for
sale. However, they are usually designed for ceiling mounts, they are
always outlandishly expensive for what they offer, and they are
sometimes not engineered to allow the projector to be mounted on a
tripod. For all these reasons, it's better to build mounting plates from
scratch.

An easy approach is, for each projector, to use one-foot square pieces of
1/4" hardboard, metric screws that correspond to the threading of the
holes in the projector cases, and some other very small items. (Detailed
instructions for building mounting plates from scratch appear below,
under the headline Building Projector Mounts.) It's best not to
purchase the mounting plate components in advance -- wait until the
projectors themselves have been purchased and the setup of the entire
CaveUT implementation has been determined, at which point your
precise needs will be readily evident.

Materials For Screens (Cost Variable, $0-$650)

Finally, there are the screens themselves -- the surfaces the CaveUT
images will be displayed upon.

The cost of screens varies widely. The cheapest screens consist of two
walls that are already painted white -- net cost zero. Other approaches to
screens include purchasing large commercial projection screens or
fabricating screens from scratch, designed to the specifications
appropriate to your own CaveUT setup.

Important: With bright projectors, especially, you can get away with all
sorts of substandard projection surfaces, but there absolutely cannot be
any gaps or ridges in the material. Also, any join between two screens
has to be absolutely perfect. Much of design of the V-Cave is centered
on keeping the seam between the two screens clean and straight.

Below, under the headline Building Portable Screens, are instructions
for building an inexpensive set of screens suited to a portable CaveUT
setup.

Building Portable Screens for a V-Cave

Components and Costs

Screen Material ($20-$500)

The screens shown above were constructed with two 70"x88" sheets of
material used in the making of banners -- the sort that proclaim the
opening of new restaurants or the availability of apartments for lease.
The precise material used in these screens was "FS 12oz White H/G"
with grommets at one-foot intervals on all sides. Such material can be
purchased from many banner printing companies. In the V-Cave setup,
the sheets cost a total of $160.

For the first V-Cave prototype, white shower curtains, with grommets
added to the edges by hand, were used. This worked reasonably well,
but the banner material is much better. Composed of three layers of
plastic -- one black layer in the middle and two white layers on the
outside -- banner material prevents light from getting though, which can
be important in an environment with a lot of ambient light. In a front-
projection setup, any backlight will degrade the projected image.

It's also possible to order professional screen material from companies
that sell projection and presentation supplies and components. (Cost for
enough material for two screens would be approximately $500.) These
materials fold up nicely and does not crease like banner material does.
You can usually ordered with grommets installed and some screens are
suitable for back-projection.

It's helpful to remember that the better the projection surface is, the more
of the projector's light it will reflect. However, if you have a dark room
and good projectors, you can get away with using inferior screen
materials.

As a rough guess, banner material reflects about 80% as much light as a
professional screen, while shower curtains reflect about 60%. The 1000-
lumen bulbs used in many projectors look like 800-lumen bulbs when
shining on banner material or 600-lumen bulbs when shining on shower
curtains. In ideal circumstances -- that is, in a dark room -- shower

curtains can be more than sufficient.

Note also that shower curtains do let enough light through (about 40%)
to be used as a rear-projection material, again assuming a sufficiently
dark room and sufficiently bright projectors.

Another advantage to very bright projectors is that they wash out
imperfections on the screen. Dirt, scratches and creases usually get
washed out in the brighter image.

Finally, any projection surface, except a professional screen material,
can change the overall color of the scene projected onto it. It's possible
to compensate for this by changing the color balance in the projectors.

Plastic Hammer ($20)

The screen frame will be made of PVC
pipes. This plastic hammer is for
pounding it together and apart.

Avoid the black hard-rubber mallets.
They smell bad, leave black marks on
the pipes, and tend to become damaged by use.
Pipe Cutter ($25)

Use this to cut the PVC pipes
to make the screen frame.
You could use any fine-
toothed saw, but the pipe
cutter is much faster and
easier, and gives a smooth,
even cut every time.

Screen Frame (90' of 1 1/4" PVC Pipe) ($50)

Obviously, there all sorts of materials are suitable for the construction of
a screen frame. PVC pipe is a good choice because it's cheap, not-too-
heavy, easy to work with, easily replaced, and rugged.

Cut the pipe into the following pieces:

27 31" segments (one is a spare to account for loss or breakage)
2 27.5" segments
4 12" segments
8 2.5" (tiny) segments

You will also need the following specialized PVC pipe pieces, normally
available at the same retailer that supplied the PVC pipe:

19 straight joiners (one is a spare)
9 90-degree turn joiners (one is a spare)
3 four-way "cross" joiners (one is a spare)
5 45-degree turn joiners (one is a spare)
5 T-joiners (one is a spare)

When these components are first assembled into a frame, it will be
terribly unstable, wobbling drunkenly at the merest push. However, once
the screen material is on and stretched, the whole thing will become
much more stable.
100 feet of 1/4" nylon cord ($3)

It's best to choose one of the more
slippery or slick varieties of nylon cord.
This makes it much easier to adjust
tension of the screen material on the
frame -- efforts to tighten the screen
material in one spot will spread to
nearby grommets on the screen material. This greatly reduces the
amount of fine-tuning required by the screen assembly.

16' of Carpet
Seam Binder
($10)

A "carpet
seam binder" is a strip of metal (as shown to right)
which is sometimes used in the United States to cover
a seam between two carpets, especially if they are of
different types or there is a gap between them. With
the V-Cave, carpet seam binders were used to clamp
the edges of the two screens together at the corner
where they join, as shown to the left.

It is very important that this corner be even and smooth. For rear-
projection, the joining mechanism has to be very thin where it touches
the screens, otherwise it would get in the way of the projections. The
carpet seam binders are perfect for the job.

Exact instructions for use of the carpet seam binders appear below,
under the How to Assemble the Portable Screens headline. Note that
the end pieces each have a hole at the one end, as shown in the
illustration to the right; they are used for threading the rope through.

Cut the seam binders with a hacksaw (they are made of aluminum) and
smooth the edges with fine-grained sandpaper. Use the sandpaper to
round off the corners of the seam binder strips so they don't puncture
the screen material or damage other screen components.

Package of Fine-Grit Sandpaper ($3)

Sandpaper is used for grinding off the sharp corners of the carpet seam
binders.

Twenty 2" hand clamps ($40)

See the left-hand illustration beside the 16' of Carpet Seam Binder
headline. The black clamps shown there are 2" clamps. In the example
shown in the illustration, ten 2" clamps and ten 1" clamps were used, but
it's easier to use 2" clamps exclusively, and these instructions assume

that's the technique that will be used. (In other words, do as we say, not
as we do.)

As the illustration shows, these clamps attach the carpet seam binders to
the screens, effectively creating a strong seam. The clamps also act as
grommets in that nylon cord will be threaded through them as shown in
the illustration under Step 3 beneath the How to Assemble the
Portable Screens headline below. During assembly, you'll thread the
nylon cord through the clamps as shown in that illustration.

How To Assemble the Portable Screens

The general configuration of this portable setup is shown on the
illustration of the screens (without projections) under the Portable V-
Cave headline on the Examples of CaveUT Implementations page.

To the left
is a close-
up of the
lower part
of the
central
corner,
while the

picture to the right illustrates how those
two diagonal cross pieces attach to the frame. The cross-pieces are
only needed to increase the strength and stability of the frame. The
picture to the right also shows how the very short pieces of PVC pipe fit
the joiners together into larger configurations.

Follow these steps to assemble the various components into screens.

Step 1

On a clean floor or a large clean surface, lay one of the screens face-up.

Step 2

Lay the other screen on top of it, face-down. The grommets on the two

screen pieces will not line up, but that's not important.

Step 3

The "stack" of two screens is
rectangular. Choose one of the
long sides of this stack and lay
three of the carpet seam binders
on top of the screens, parallel to
that edge and about 1" to 1 1/4"
from the edge.

Arrange the other three carpet
seam binders in exactly the same
way, but upside down, underneath
the screens, along the same edge.
The two rows of seam binders
should be facing each other.

One by one, put the metal clamps
into place, so the seam looks like
the one shown in the illustration to the right. While doing this, make sure
that the edge of the two screens is pulled taught. At this point in the
process, there will be creases and wrinkles in the screen material, and
it's important that no creases or wrinkles remain between the seam
binders.

In addition, it's important to make sure that the carpet seam binders are
exactly the same distance from the outer edge of the screen at all points.
In other words, they need to always be exactly 1" from the edge all along
the length of the seam, or all exactly 1 1/4" or even 1 1/2", so long as
they are consistent.

Be careful that the bottom pieces perfectly line up with the ones on top.

Assembly of this step is easiest when three people work together, though
one person can do it.

Finally, it's best not to stress too much about this step. If it is done
incorrectly, it's possible to fix matters later.

Step 4

With the clamps and the carpet seam binders,
you now have a seam joining the two screens.
Decide which end of the seam is going to be
the top, and then put a two-foot piece of cord
halfway through the two holes of the carpet
seam binders, as shown to the right.

Step 5

Carefully, move the screens to the frame. One person can do it, but it's
easier with two people involved.

Bring the top end up to the top corner of the frame.

Tie the piece of cord around the 4-way cross piece joiner at the top of the
frame. Be sure to wrap the cord through opposite corners of the cross
piece, as shown in the illustration that accompanies Step 4. This will
allow the seam to hang directly underneath the center of the cross piece.

Step 6

Tie the bottom of the seam to the bottom cross piece in exactly the same
way. Make it tight, but not too tight, or the clamps may start to slip off the
carpet seam binders.

Step 7

Take a 20-foot length of the nylon
cord, tie one end to the frame (as
shown to the right), and start looping
along the top of one of the screens as
shown. Work from the first available
grommet near the inner corner of the frame towards the outside. Do not
pull too hard. Keep the top edge of the screen some consistent distance
from the top PVC pipe. At the same time, make sure that the bottom
edge is at least an inch or two above the bottom edge of the frame.

Step 8

Keep threading the
cord until you reach
the top corner of the
frame and keep on
going down the
outer edge, as
shown to the right.
Roping the outer
corners is
problematic -- it is
difficult to do this
without allowing the
screen to sag a little, a problem we have not yet solved. (People setting
up their own CaveUT implementations who find a solution are
encouraged to let us know; we'll add it to the next revision of this
documentation.)

Continue threading until you reach the middle of the outer edge, and
stop there. Do not pull it tight yet.

Step 9

Thread the other screen, at the top, in exactly the same way.

Step 10

Thread the bottoms of the both screens in exactly the same way you did
the top edges. The loose ends of the ropes for top and bottom should
meet in about the middle of the outer edges.

Step 11

Thread one long piece of cord through the hand clamps behind the
cental corner of the frame, as shown in the illustration beside Step 3.
Start at the top and work your way to the bottom. Don't pull the cord too
tight at this point, but don't let it hang in loops. Attach it at the top and
bottom by wrapping it around one spur of each crosspiece a few times,

but don't tie it off.

Step 12

Gently, but firmly, tension the top or bottom edge of one screen,
whichever one has the most room between the edge of the screen and
the frame. Start at the first loop of the rope, which goes though the first
grommet nearest to the frame's central corner. Pull the slack out of that
loop and get rid of the slack by pulling on the next loop. Then pull the
following loop and so on. Keep going past the outer corner of the screen
and go down (or up) along the outer edge of screen. Eventually, you will
reach the end of cord. All the slack will now become more rope hanging
off the end.

Secure it by tying a slip-knot or just wrapping it around the PVC pipe a
few times.

Step 13

Tension the other side of the screen, the top or bottom, and work out to
the outer edge, just as described in Step 12.

Step 14

Tension the other screen in exactly the same way.

Step 15

At this point, take a serious look at the inner corner of the screens. It
should bow inward a bit, toward the viewer. This is not a problem; the
bowing will be corrected in the next stop.

Take note of whether the screen is clean and consistent, and whether
there are any puckers or wrinkles caught in it. If it is flawed in these
ways, then you can fix it: Take all the clamps and the carpet seam
binders off of the back of the seam, but let the carpet seam binders stay
tied to the screen frame. Remove the cord that you had strung through
the clamps. Now, rebuild the seam in much the way you did it in Step 4,
starting from the top and work down. You will find that the process is
easier this time, and you should get a good, straight edge.

Step 16

Move along the edges of the screens, tightening the loops of rope as
much as necessary to make the screen hang flat and to make the main
corner clean and straight. You will find that you have to pull a bit more
near the center of each side of each screen. This phenomenon will be
familiar to anyone who stretched a canvas over the traditional wooden
frame to make a painting. The PVC pipes in the frame will bow in a bit,
which is normal and not problematic.

Done

Now the screens are finished.

Disposable Overstructures to Shade Portable Screens

Obviously,
portable
screens are
useful for
CaveUT
implementations
meant to be
moved from site
to site, chiefly
for purposes of
demonstrations.
It's not usually
practical to
carry oversized sunshades to shield the screens from bright lights, but
it's similarly unrealistic to expect all venues to have the best ambient light
for a CaveUT's purposes... and bright lights wash out the images
projected on the CaveUT screens.

One such instance was CHI 2002, where the VCAVE was demonstrated.
There, it was necessary to improvise a temporary overstructure to shade
the screens from the bright lights in the convention hall.

About $100 at a large hardware/construction supplies store purchased

enough 4'x8'x1" sheets of pink rigid foam insulation (in this case,
Foamular® by Owens Corning). This sort of material is ideal for light
improvised construction of this sort -- it's light, strong, cheap, stable, can
be cut with a steak knife, and can be attached with packing tape and
standard wood glue. (On the down side, it's also extremely flammable,
making it unsuitable for permanent displays unless you treat it further
with some sort of fire retardant.)

The roof of the structure constructed to shield the VCAVE from overhead
lights was a right triangle (11.31' x 11.31' x 16') made from three sheets
of Foamular® -- as shown here, the two corner pieces are both taken
from one sheet. The edges were glued together and additionally taped
with clear packing tape.

Once the pieces were taped together, they became remarkably stable. It
was then possible to maneuver and cut them as if they were a single
piece. (A tip to such construction: Packing tape will usually peel off with
time, but not until it has given glue time to dry. For fast, improvised
construction of this sort, it's convenient to glue the pieces together for
their long-term stability, then immediately tape them for short-term
stability.

As shown to the right,
simple brown construction
paper served to block light
from coming through the
lacings between the frame
and the screens. (In this
case, it was not necessary
to use it behind the
screens, as this particular
screen material was
already opaque.) In a
similar situation, if your
screen material is at all
transparent and you are using front-projection, you must put something
behind the screens to prevent light from leaking through the screens and
washing out the projection image.

Finally, there is single black bar supporting the frame's roof, which which is
barely visible in the illustration to the right. This as just a water-pipe laid on
top of the PVC pipe structure and tied onto the frame with two bits of rope.

The whole thing went into the trash once CHI 2002 was done.

Building Projector Mounts

Earlier, we discussed the fact that most CaveUT implementations will
require that mounting plates be fabricated for the projectors. Here are
some guidelines for fabricating them.

First, some warnings:

● The plastic case of the projector is much softer than any metal bolt or
screw, and the threaded holes in them are not likely to have any kind of
metal lining -- they are just cut into the plastic case. This is not a
problem if you are gentle, but you must not try to force the bolt in.
Doing so can easily strip the threads in the bolt-hole.

● The bolt-holes may have a metric threading. If the required bolt size is
not in the projector's specifications, it will be necessary to go to a good
hardware store with the projector and experiment with metric screws
until you find one that fits. Forcing a bolt with the nearest English
system approximation of the threading into the hole will inevitably strip
the bolt-hole's threads.

● Most importantly, however you mount or place a projector, do not cover
up any of its air vents. This will definitely cause it to overheat, ruining
the projector and costing thousands of dollars.

Step A

Make a plate of
some flat
material and cut
it to match the
dimensions of
the side of the
projector with
the bolt holes.
Hardboard and
Plexiglas® are
ideal, but any
construction
material that is
sturdy, lightwait, and suitable for cutting will do.

If the plate covers up a vent on the projector, then cut an equal-sized
hole in the plate to let the air through.

Step B

Drill a hole in the plate for each bolt-hole. Be sure to carefully measure
the bolt-holes' relative locations and mark where you want to drill into the
mounting plate. Guessing, rather than accurately measuring, is
counterproductive.

Step C

Add hardware to the mounting plate which will allow it to attach to the
tripod with a bolt that fits through the appropriate slot in the tripod's head.
Any number of nuts or nut-and-washer combinations available at the
hardware store should serve admirably.

Probably the most durable and effective approach, assuming ready
availability of the appropriate tools, is to make the mounting plate out
metal and weld a steel nut to the middle of it. Then it's a trivial matter to
attach the plate to the tripod's face-plate with a steel bolt. Steel is best,
as the entire weight of the projector will be resting on just the threads in

the nut and the tip of the bolt.

It's also not a bad idea to put some space between the mounting plate
and the projector by using longer screws and placing additional washers
or nuts between the projector and the mounting plate. This allows
permits use of a larger, sturdier nut for the point where the tripod bolt
attaches to the mounting plate, and provides even more room for air-flow
and cooling of the projector.

Step D

Attach the mounting plate to the projector.
Be aware that the bolt-holes are not
usually deep. If you cannot find bolts that
are the right length, purchase bolts that
are a little too long and use washers and/
or nuts as spacers.

Next: Software and Downloads

Previous: Hardware and Software Requirements

Start: Back to Page Index

Last updated January 16, 2004.
URL: http://www.planetjeff.net/ut/CUTCave.html/

This page is copyright © 2004 by Jeffrey Jacobson.
See this web site's copyright notice for information

on duplicating or distributing this page or its
contents.

mailto: jeff@planetjeff.net

Software and Downloads

Required Files

The following files are the minimum necessary software acquisitions
and downloads needed to set up and run CaveUT.

(From Computer Game Retailers:)
● Unreal Tournament 2003. An installation of CaveUT requires the

purchase and installation of one commercial copy of Unreal
Tournament 2003 per client PC/screen in the CaveUT setup and an
additional one for the server-PC.

(From Planet Jeff Site:)
● ut2003-winpatch2225.exe. This package contains the latest Unreal

Tournament 2003 code patch. It is a self-extracting archive that will
install itself on your existing installation of Unreal Tournament 2003,
so do not run it unless you have UT2003 installed.

● CaveUT2003.zip. This package contains the CaveUT Mutator and
the executable for VRGL. Download it to any directory and de-
archive it with WinZip or any other utility that handles .ZIP archives.

Currently, download of CaveUT is offered via http only. If you have
any problems obtaining it, contact Jeffrey Jacobson.

Optional Files

● VRGL Source Code. From this page, download VRGL.zip. It has
been compiled with MSVC++ 6.0, and other compilers should work.

● CaveUT 1.2. All the instructions and downloads you need for
CaveUT on the old Unreal Tournament

http://usl.sis.pitt.edu/PlanetJeff/ut/CaveUT-Downloads/ut2003-winpatch2225.exe
http://www.planetjeff.net/ut/CaveUT2003.zip
mailto: jeff@planetjeff.net
http://planetjeff.net/ut/CaveUT_1.2.html

Next: VRGL

Previous: Hardware and Software Requirements

Start: Back to Page Index

Last updated January 16, 2004.
URL: http://www.planetjeff.net/ut/CUTDown.html

This page is copyright © 2004 by Jeffrey Jacobson.
See this web site's copyright notice for information

on duplicating or distributing this page or its
contents.

mailto: jeff@planetjeff.net

VRGL

Off-Axis Projections for OpenGL
Applications

by Willem de Jonge

VRGL is a modified OpenGL libarary which makes it possible to use
off-axis projections with Unreal Tournament 2003. In principle, VRGL
is generic and can also be used with other OpenGL applications to
get an off-axis frustum.

It is a custom OpenGL library that calls the original system OpenGL
library for most of its work. It changes the projection of the application
to a user-defined (by means of parameters in an .ini file) off-axis
frustum.

Note that while VRGL is a generic tool for off-axis projections it is
developed for, and tested with UT2003. VRGL is used by
CaveUT2003 to allow UT2003 to work on multiscreen immersive
displays. It is this package, part of the game itself, which
synchronizes the rotation and position for all display clients. It calls
VRGL to handle the perspective effects.

Configuration and usage

For an application to use the custom OpenGL library it should load
this one instead of the system one, this is accomplished by placing
the library in the same directory as the executable, this directory is
searched before the system directory for any dll’s to load by
Windows. For UT2003 this directory is <install-dir>\System.

The parameters for the off-axis projection are read from the file

http://planetjeff.net/ut/CaveUT.html

CaveUT.ini in this same directory. Four parameters, FOVleft,
FOVright, FOVtop and FOVbottom , are used to define the projection.
These parameters are the angles for all sides of field-of-view in
degrees relative to the view axis (perpendicular to the viewing plane
through the center of projection).

If the part of the new off-axis is outside the original field-of-view it is
possible that objects in that part aren’t rendered because the
application thinks they won’t be visible and thus doesn’t send them to
OpenGL. In UT2003 this is fixed by setting the fov as large as needed
to fit the whole off-axis frustum.

VRGL reads its parameters from the CaveUT.ini configuration file.
The parameter OffAxis can be set to Yes or No to turn on or off the off-
axis effect. VRGL ignores the other parameters, (Roll, Pitch,...,
CaveFOV) which are used by the CaveUT2003 mutator.

Example CaveUT.ini file:

[CaveUT.Spectator]
CaveRoll=0.000000
CavePitch=0.000000

CaveYaw=0.000000
CaveOffsetX=0.000000
CaveOffsetY=0.000000
CaveOffsetZ=0.000000
CaveFOV=100.000000
OffAxis=No
FOVleft=-45
FOVright=45
FOVtop=36.87
FOVbottom=-36.87

[CaveUT.CaveUTInteraction]
RotateIncrement=0.250000
OffsetIncrement=0.500000
FOVIncrement=0.500000

Download

The source and executable are in: VRGL.zip.

The source code was originally compiled with MSVC++ 6.0, though it
should be compatible for other compilers.

Inner workings

This section gives an overview how VRGL works; exact details can be
found in the source code.

Basic operation of VRGL consists of the following:

● All calls that have an effect on the projection matrix are intercepted
to maintain an exact copy of the intended projection matrix stack

● Whenever the projection matrix changes a user defined one is
supplied to OpenGL, using the 4 FOV parameters

● Pass remaining calls 1:1 unchanged to the real OpenGL driver

http://www.planetjeff.net/ut/VRGL.zip

A copy of the matrix stack is kept to ensure that the behavior custom
OpenGL library appears the same as the real one to the application,
ie stapling and/or querying the projection matrix works as expected.
For non-perspective projection matrices the intended matrix is used
directly and not the user defined one, the reason for this is a practical
one: Even if you have a really odd user projection you can still 2D
elements such as the game menus and console in UT2003.

To build the user defined projection matrix we need a near and a far
plane besides the 4 FOV parameters. To ensure that behavior is as
much as was intended by the application we extract the values for the
near and far planes from the intended projection matrix.

To pass calls to OpenGL the custom library implements a jumptable
to the real OpenGL functions is maintained. To fill this table the
original OpenGL library is dynamically loaded and the table filled on
initialization. We can’t link directly/statically to OpenGL as we are
building the same library (as far as interfaces are concerned).

As this jumptable and the code to initialize is quite dump (for all the
calls that are passed unchanged) we automatically generate is. This
is done with the genstub.pl perl script, it takes for input OpenGL
header files, gl.h (the mesa header file is used for this one) and wgl.h
(specifically composed for this purpose), the latter containing the
function declaration for the Windows specific calls. In addition to the
header files two files containing function names are read:

● Autostubs.txt – functions for which automatic stub code should be
generated

● Replaced.txt – functions that are implemented manually, ie calls that
affect the projection matrix

From this the following is generated:

● Gljumptable.h – the class declaration of the jumptable, having a
function pointer for every OpenGL call

● Gljumptable.cpp – code to initialize the jumptable
● Glstubs.cpp – implementation of the OpenGL functions that are

passed unchanged to OpenGL, ie these functions just call the
matching function in the jumptable.

● Exports.def – this is only to keep VC from exporting mangled names
for the exported OpenGL API

CopyLeft Notice

To make a long story short, VRGL is "BragWare": You can use it for
anything you want, as long as you give us credit. If you do use it,
please let us know so we can tell people about your excellent work.

Officially, VRGL is distributed under the Lesser GNU Public
Licence. In summary, this means that VRGL is public domain and
stays that way, whether you change it or not, and you may not in any
way claim it as your own. If you make some software which calls
VRGL or otherwise depends on it, you need to keep VRGL a distinct
entity. The LGPL will only apply to the VRGL portion. You can even
sell your software as a commercial product and just provide a free
copy of VRGL as part of the distribution. For the legal details, read
LicenseVRGL.html.

Next: How to Install and Configure CaveUT

Previous: Software and Downloads

Start: Back to Page Index

Last updated January 16, 2004.
URL: http://www.planetjeff.net/ut/CUTVRGL.html

This page is copyright © 2004 by Jeffrey Jacobson.
See this web site's copyright notice for information

on duplicating or distributing this page or its
contents.

http://www.gnu.org/licenses/lgpl.html
http://www.gnu.org/licenses/lgpl.html
http://www.planetjeff.net/ut/LicenseVRGL.html
mailto: jeff@planetjeff.net

How to Install and Configure
CaveUT

Intalling and then configuring CaveUT is a procedure not suited to the
faint of heart, but methodically following the steps described below
should see you through it with setup and sanity intact.

The numbered sections below show the major phases of the
installation and configuration operations. They are:

I Install Software on Each Client Computer
II Install and Configure the Server
III Start CaveUT for the First Time
IV Read This: Perspective
V Configure View Rotations and Offsets
VI Configure Perspective Correction

Next: I. Install Software on Each Client Computer

Previous: VRGL

Start: Back to Page Index

Last updated January 16, 2004.
URL: http://www.planetjeff.net/ut/CUTInstall0.html

This page is copyright © 2004 by Jeffrey Jacobson.
See this web site's copyright notice for information

on duplicating or distributing this page or its
contents.

mailto: jeff@planetjeff.net

I: Install Software on Each Client Computer

These instructions describe what must be done for each PC that produces the digital image for one screen of
your multi-screen display. They presume that you have already downloaded all necessary files described on
the Downloads page.

Step 1: Install Unreal Tournament 2003

This merely requires that you follow the instructions that came with the Unreal Tournament 2003 download or
disc.

Step 2: Install the Latest Code Patch

From whichever directory you saved it to, execute this file. It will find your UT2003 installation and modify it.

Step 3: Backup Specific Files

Installing CaveUT will change the following files in your C:/UT2003/system/ directory:

● opengl32.dll

It's a good idea to make copies of them before you get started. In the unlikely event that installation of
CaveUT corrupts your UT installation, you can always repair it by bringing these files back.

Step 4: Extract CaveUT Files

Extract these files from CaveUT2003.zip and copy them into your C:/UT2003/system directory.

● CaveUT.ini
This is the configuration file for CaveUT. It contains only default values, mostly zeros, which specify "no
change" for the view screen. Leave this file unmodified for now. You will adjust these parameters after you
get everything else working right.

● CaveUT.u
This is both the code and the executable for the CaveUT Mutator. (A "mutator" for Unreal Tournamentis
special way to package changes to the game code for all versions of Unreal Tournament. For a general
idea of how this works, read this somewhat out-of-date tutorialfor the old Unreal Tournament.

● CaveUT.int
This small config file tells UT2003 to load CaveUT.u. Do not modify it.

● opengl32.dll
The is the executable for OffAxis, the modified OpenGL library which CaveUT depends upon for its
advanced functions.

● README.TXT
This document refers to this web page and includes change history notes and other notices.

Step 5: Edit UT2003/System/ut2003.ini

Make the following modifications to the ut2003.ini file:

Replace the line: "ServerPackages=UTClassic"
With this line: "ServerPackages=CaveUT"

Replace the line: "AllowDownloads=True"
With this line: "AllowDownloads=False"

http://unreal.epicgames.com/UTMods.html

You will notice three lines which look like this near the beginning of the file:

RenderDevice=D3DDrv.D3DRenderDevice
;RenderDevice=Engine.NullRenderDevice
;RenderDevice=OpenGLDrv.OpenGLRenderDevice

Put a semicolon in front of the first line and get rid of the semicolon in front of the third line, so they look like
this:

;RenderDevice=D3DDrv.D3DRenderDevice
;RenderDevice=Engine.NullRenderDevice
RenderDevice=OpenGLDrv.OpenGLRenderDevice

When you save the file from your editor, be sure it writes the file in text-only mode. The "Notepad" editor in
Windows is fairly safe and easy this way.

Step 6: Set Up a Connection Shortcut

Create a shortcut to UT2003.exe and put it on the client's desktop, in the Start menu directory, or wherever it
best serves your needs.

Right-Click on the shortcut to get a pop-up menu.

Go to the bottom of that menu and select "properties". You will get a dialogue box with three tabs.

Select the "Shortcut" tab.

In the textbox "Target", you will see the full pathname to the UT2003 executable. Copy and paste (or type) a
single space onto the end of the pathname and then the following text:

127.0.0.1?spectatoronly=true?quickstart=true

So the whole line would look like this, except that it doesn't all show in the textbox:

C:\UT2003\System\UT2003.exe 127.0.0.1?spectatoronly=true?quickstart=true

Replace the local IP address, 127.0.0.1, in the "Target" dialogue box with the IP address for your server
machine. If you do not know what this means or how to use it, contact your network administrator.

Step 7: Set the
Video Options

Launch UT2003 via
its shortcut in the
Start Menu. From
the initial main
menu, click on
"Settings" to get the
settings menu
shown below. The
tabs along the top let
you change the
screen to access
different groups of
settings. It usually
defaults to the video
settings, which is
convenient.

Set the color depth
to 32, or OpenGL
will give you lots of
nasty flashing
polygons effects.

Set the screen resolution to whatever your projector (or whatever) can handle.

There are no hard and fast rules for further adjustment of the video options; you should experiment with the
other settings until the video projection suits your tastes, preferences, and purposes.

Step 8: Make Sure the Sound Is Turned Off

In a typical CaveUT installation, you only want the server machine to be producing the sound effect.
Otherwise you get a cacophony of sound effects, most of which are the same sound, but with each machine
slightly out of phase with the server.

The simplest way to disable unwanted sound sources is simply not to plug in any speakers. You can also
turn each client computer's sound off.

Otherwise, you can click on the "Audio" tab in the settings panel and set all the volume sliders to zero.

Next: II. Install and Configure the Server

Previous: How to Install and Configure CaveUT

Start: Back to Page Index

Last updated January 16, 2004.
URL: http://www.planetjeff.net/ut/CUTInstall1.html

This page is copyright © 2004 by Jeffrey Jacobson.
See this web site's copyright notice for information

on duplicating or distributing this page or its
contents.

II: Install and Configure the Server
Step 0: Make sure your server PC has a static IP address.
If you have the server and all the clients pluged into an unmanaged hub
or network switch, then you have to set their IP addresses manually,
anyway. If you do not know how to handle PC networking, go find
someone who does. It's simple, but not intuitive.

Steps 1-5: Follow Steps One Through Five of the Installation
Instructions for a Client Machine (Previous Page)
But do not repeat Steps Six or Seven from those instructions; do not
modify the file CaveUT.ini.

Step 6: (Optional) Edit User.ini
In the file User.ini, change the line reading "Bob=0.????" to "Bob=0".
This will turn off the bouncing effect players experience while navigating
UT2003's "walk" mode. (The bouncing effect is not in time with any
reasonable walking speed, nor is it the way we visually experience
walking. For most uses of CaveUT, it serves best if disabled.)

Step 7: Start UT2003
Double-click on the program's desktop icon (if it has one) or launch it
from the "Start" menu.

Step 8: Prepare to Change the Video and Control Settings
From the main menu, select "Settings."

Step 9: Set the Video Options
Do this in exactly the same way as you did for the clients' setup, but this
time it is only for the CaveUT operator's viewing pleasure -- the server
machine will essetentially be the control panel.
A helpful trick: You can often get away with the server PC being slower
than the client machines. Just set the screen resolution and color depth
to mininimum values so the game runs quickly.

Step 10: Set the Control Options
Click on the "Controls" tab to reveal the settings for keyboard, mouse,

and/or joystick controls. At the moment you should probably leave these
alone, but you will need to come back to this screen later to customize
the controls to your liking.
To get out of the settings menus, click the "back" button on the lower left
corner of the screen.

Step 11: Setup for a Multi-Player Game
You should see a screen like the one to the right.
The bottom portion of this screen is used to select the virtual world you
will be using. The default is DM-Antalus, which is a visually appealing
setting whose naturalistic shapes tend to cover up flaws in the display.
When you start calibrating your CaveUT-based display, you should
switch to a more demanding virtual world, such as DM-TrainingDay or
DM-Serpentine (calibrating more difficult worlds ensures that your
CaveUT implementation is up to the demands of any virtual setting).

Step 12: Click On the "Server" Tab
You should now see the screen to the right.
Go to the lower-left area of the screen and increase the "Max Spectator
Count" to some high number, like 20. You only need as many
spectators as you have screens on your display, but having a higher
max affects nothing and might save you trouble some day.

Example
If a the UT2003 game server is already supporting the maximum
number of spectators and another tries to connect, the would-be-
spectator's display will offer up the cryptic error message "Connection
Refused by Server" and do nothing else.
This could happen, for instance, if someone were to set up a four-
walled display with CaveUT but first test it on only two wall. He leaves
the maximum number of spectators at 2 for the test, because that's all
he needs. When the test is successfully completed, he sets up the
other two walls but forgets to set max-spectators to 4. Once the first
and second screens' clients are connected to the server, the server
will refuse the third and forth until the max-spectators value is set
higher and the server is restarted.

(For some strange reason, changing the "MaxSpectators" variable in the
"UT2003.ini" does not work.)
In addition, you should click on the "Lan Game" checkbox, to improve
your network performance.

Step 13: Click On the "Mutators" Tab
Select the CaveUT mutator by clicking on "CaveUT" on the list in the left
side box, then clicking on the "Add" button in the middle. When you are
done, the screen should look as it does, below. At this stage, don't use
any other mutators. Most should work with CaveUT, but some may
conflict. Get your CaveUT installation working and stable before you try
other mutators.

Step 14: Set the Time Limit for the Game
Click on the "Game Rules" tab, and set the "Time Limit" to the highest
number you can, which is 9999. That is the number of minutes the
server will allow the game to run before it kills the one server player and
restarts the game.

The installation is now complete. At this point, you can start the server by
pressing the "start" button in the lower-right hand corner, or start it up
later, per the instructions on tne next page.

Next: III. Start CaveUT for the First Time

Previous: I. Install Software on Each Client Computer

Start: Back to Page Index

Last updated January 16, 2004.
URL: http://www.planetjeff.net/ut/CUTInstall2.html

This page is copyright © 2004 by Jeffrey Jacobson.
See this web site's copyright notice for information

on duplicating or distributing this page or its
contents.

mailto: jeff@planetjeff.net

III: Start CaveUT For the First Time
Step 1: Start a Multiplayer Game On the Server Machine

Choose a level (virtual world) to begin with. Be sure the enter the
game as a player, not a spectator.

When the virtual world becomes visible, press the button designated
in the Controls menu/screen for "fire," meaning "fire your current
weapon." You must do this for your player to enter the game, and the
CaveUT Mutator on each client needs that player to function properly.
There is an approximately thirty-second wait before the player
appears. When s/he does, a swirling light effect will briefly appear on
the screen and there may be a sound effect.

Step 2: Connect Each Client to the Server

On each client PC, double-click the specialized shortcut to UT2003
you built earlier. The game should flash a brief message indicating
that it is connecting to the server, then spend up to a minute loading
its copy of the level now in use on the server. For this to work, the
level in question has to be installed on both the server and client
machines. While you are testing your installation, it's a good idea to
use the basic levels that come with the game.

Step 3: Press the Fire Button on Each Client

This will change the client's view to be co-located (in the virtual world)
with the view of the server player. At that moment, the rotation and
offset effects from CaveUT will begin. The perspective effects should
already be visible. If the server player is not in the game yet, this
won't work. Just wait a few seconds until s/he is.

Clicking the fire button actually shifts the client's view from one player
or bot to another. If there is only one player in the game (on the
server), the fire button effectively toggles between the CaveUT view
from the player and a non-useful flying view.

If there will be more players and/or bots in the game, its helpful if the
player on the server machine enters the game first. That way its view
is the first on the list, so the first fire button click will give you the
server player's view. Otherwise, you have to keep pressing the fire
button until the client shows the correct view. This will also happen if
you accidentally skip past the server view.

Step 4: Test Movement and Synchronization

On the server machine, as the game's only player, run around a bit in
the level. All of the client views should change in tandem providing a
rougly integrated image across all your screens. If movement
displayed on the server's monitor is jerkey, try reducing the screen
resolution, color depth, etc., to improve performance. If the server is
quick and the clients displays are jerkey, you probably need to get
them better video cards. If you can play UT2003 on a client, as a
stand-alone machine at the same video resolution settings, and you
get good performance, then it's a networking problem. If you are using
a wireless network hub, get rid of it. Strining the network cables may
be a chore, but they are much more reliable.

Most likely, everything will work fine, except that the projected images
from the client machines don't quite line up. The following sections will
show you how to compute the correct settings for each client and fine
tune everything.

Next: IV. Read This: Perspective

Previous: II. Install and Configure the Server

Start: Back to Page Index

Last updated January 16, 2004.
URL: http://www.planetjeff.net/ut/CUTInstall3.html

This page is copyright © 2004 by Jeffrey Jacobson.
See this web site's copyright notice for information

on duplicating or distributing this page or its
contents.

mailto: jeff@planetjeff.net

IV: Read This: Perspective
In western culture, ever since the Renaissance, paintings have used the technique of perspective to create
an illusion of depth.

In the most simple implementation of artistic perspective, the primary lines in the composition all converge to
a single point on the canvas; that location is called "the vanishing point."

The same effect is widely used in photography, film, and computer imagery. This page will relate artistic
perspective to player view in CaveUT in a simplified fashion; you are encouraged to read more on
perspective in textbooks for art, computer graphics, human perception, and mathematics.

Coordinating Off-Axis Projections in a Multiscreen Display

Think of UT2003 displaying on a single screen in a fashion consistent with most first-person computer or
video games. The vanishing point of the image is co-located with the physical center of the screen. A first-
person view of a virtual world presents the screen as a moveable window onto the world. Ideally, the
perspective of the presented image is the same as if you are looking through a window onto a real scene.

The general situation is illustrated here: In
Figure One, the viewing frustum is simply a
way to describe what the viewer can see
through a window. With a painting or
photograph or video game, the frustum
extends from the eye, through physical
space, and into virtual space. The illusion of
depth is correct, but (usually) only so long
as a perpendicular drawn from the plane of
the image to the observer's eye is over the
vanishing point in the display.

For UT2003, this means that you have to be
looking straight at the center of the screen
for the depth illusion to be mathematically
correct. Most first-person shooter games
are structured this way.

The human brain is very agile, and will allow a viewer to comfortably view a
movie/photo/painting/video-game screen from a considerable angle, far off
the ideal viewing location and direction. However, a normal person's visual
centers can only do so with an image that reside entirely on one screen.

The idea behind CaveUT is to array several screens around the viewer to
create an immersive display, as shown in the figure on the left.

In this schematic, the viewing frustum associated with each screen is
shown in dashed lines. (The floor is also a screen) Each frustum begins
with the viewer's eye, occupies an area in physical space shaped roughly
like a pyramid up to the projection screen, then continues through virtual
space to an imaginary infinity. (The perpendicular line from the viewer's eye
to each screen is shown in light gray.) Where the perpendicular intersects
the plane of the screen is the vanishing point of the image shown on the

screen.

It is important to note that all four viewing pieces fit together like a simple 3D puzzle. This allows the viewer to
look in any direction and see all objects in the virtual scene in correct perspective. In fact, for any direction

http://mathforum.org/sum95/math_and/perspective/perspect.html

that the viewer looks, s/he will enjoy a proper perspective view. Instead of a cave, you could use four
paintings or photographs to achieve the same effect, but for one static scene only.

As you can see in the schematic above, all four of the view frustums have a common apex, which is where
the viewer's "eye" is supposed to be. (In practice, the player does not have to be so precise as to place his
eye there -- just putting one's head in the vicinity is close enough.) From now on we will refer to that location
as the sweet spot, which is a term used by audiophiles. It describes the best location to listen to sound
produced by particular configuration of a sound system in some space. Each screen has a sweet spot for the
eye to view it.

Think of CaveUT as a tool that can move the sweet spot for a particular screen by changing the size and
shape of its view frustum. Whatever the arrangement of the view screens for your display, the sweet spots for
screens all of them must be in the same place. Also, the view frustums must fit together exactly -- allowing no
overlaps or space between them.

Theoretically, someone could use CaveUT to orient lots of view screens at all sorts of weird angles to the
viewer, and each one would show part of a consistent view of the virtual world.

Perspective Correction

Think of each view screen in a Cave arrangement as a window into the virtual world. At its simplest, it's like
looking though the center of a real window and keeping your eye fixed a certain distance from the screen.

As you can see in
the drawing to the
right, the distance of
your eye from a real
window governs how
big a slice of the
world you can see.
That's why people
move closer to a
window when they
want to look outside.

Unlike a real window, the view on a typical monitor screen does not
change when the viewer moves. (Actually, there is specialized
hardware and software which make this possible, but that's not
relevant to this explanation.) Still, the viewer knows what s/he is
seeing is just an image and the brain accepts it as conditionally three-
dimensional. That is why someone can be far off of the ideal
viewpoint in a movie theater or in front of a television and yet easily
make sense of the show.

All of the low-cost multi-screen display solutions (like
the Matroxx Parhila) have one thing in common: The
resulting display is FLAT. In effect, they simulate one
big window onto the virtual world.

Note how lopsided the views (the "view frustums") are
for the right and left screen.

Note that if all the screens had the standard
perspective correction, their view frustums would
overlap disastrously, like this:

Of course, simple monitors could be used to physically display side views, but this requires more than just a
physical rearrangement of the screens. For example, in a three-screen flat display (i.e., the Matroxx Parhela),
each of the screens shows what is in front of the viewer. Just turning the monitors inward won't change that.

The drawing on the left shows a three-monitor flat display with the monitors turned inward.

The drawing on the right shows what happens when the software has been changed to show whatever is to
the right of the viewer in the right screen and whatever is to the left on the left screen. With the proper
perspective correction, the view frustums will fit together like puzzle pieces and the user will enjoys seamless,
integrated view.

While large, flat-panel displays are ideal for television viewing, they lack a certain immersion which a
surround view provides. For example, seeing a landscape in a simulator with a wraparound display, like the
BNAVE, shown below, would allow the user to enjoy a much wider view than any flat screen.

Next: V. Configure View Rotations and Offsets

Previous: III. Start CaveUT for the First Time

Start: Back to Page Index

Last updated January 16, 2004.
URL: http://www.planetjeff.net/ut/CUTInstall4.html

This page is copyright © 2004 by Jeffrey Jacobson.
See this web site's copyright notice for information

on duplicating or distributing this page or its
contents.

mailto: jeff@planetjeff.net

V: Configure View Rotations and Offsets

Below are the contents of the default CaveUT.ini file:

[CaveUT.Spectator]
CaveRoll=0.000000
CavePitch=0.000000
CaveYaw=0.000000
CaveOffsetX=0.000000
CaveOffsetY=0.000000
CaveOffsetZ=0.000000
CaveFOV=100.000000
OffAxis=No
FOVleft=-45
FOVright=45
FOVtop=36.87
FOVbottom=-36.87

[CaveUT.CaveUTInteraction]
RotateIncrement=0.250000
OffsetIncrement=0.500000
FOVIncrement=0.500000

For the moment, we are only concerned with four parameters: CaveRoll, CavePitch,
CaveYaw and CaveFOV. (They are shown here in bold face -- they are not bolded in the
actual cave.ini file.) Follow these steps:

Step 1: Place the Screens

Decide where you want to place the screens of your immersive display. You can have up
to 31 screens, with each one arraigned in any orientation to the viewer.

Before physically setting up the screens, first make a diagram! Draw it out carefully, with
all the important angles and sight-lines specified. You will have to use a fair bit of
trigonometry as you go. If you are new to it, or need a review, this tutorial is among the
best available online.

The term "screen", as it is used in this document, refers to the portion
of the physical display that is actually showing pixels generated by the
PC's video card. Almost always, there is some extra projection screen
or monitor material around the edges of computer driven display.

For an immersive display, it is usually best to have as much horizontal
display area as possible and to balance the left and right halves of it. That way, the viewer
sees as much (horzontal view) in the left eye as in the right eye.

http://aleph0.clarku.edu/~djoyce/java/trig/

However, humans have more vertical range down than they do up. So when you arrange
your screens, it's usually best to sacrifice some display area at the top for more display on
the bottom. The image on the left illustrates this for one screen.

Extending this idea, it's generally better to have a floor screen than a ceiling screen.

Step 2: Find the Default Sweet Spot

While multiscreen immersive displays can be irregularly shaped, the vast majority have
symmetrical designs, because they are easier to build and easier to work with. CaveUT
naturally supports symmetric and asymmetric (irregular) displays equally well.

Symmetrical displays have a useful property: There is a single symmetric view frustum
such that when all the screens use it, all the screens' frustums will meet at a common point
-- the default sweet spot.

Three examples are shown on the right: the BNAVE (ignoring its floor), MiniCave, and V-
Cave. The side view illustrates that the viewer's eye is level with the midpoint of each
screen for each display.

The default sweet spot is the easiest one to configure and is adequate for many immersive
displays, such as the MiniCave. You can calculate it while working with just the view
rotations and the CaveFOV parameters in cave.ini.

If the sweet spot needs to be elsewhere, it's still best to get everything working first for the
default sweet spot.

The procedure for finding the sweet spot is quite simple:

1. Graph or sketch where the screens are or will be.
2. Draw a perpendicular line from the center of each screen.
3. If the display is symmetrical, all of the perpendiculars will intersect at a single point, which

is the default sweet spot.

The diagram on the left shows where the sweet spot can be
found for the BNAVE in an overhead view. Since all the screens
are the same height, the vertical location of the sweet spot must
be half the length of a screen up from the surface the BNAVE is
resting on.

For more complex displays, it is best to use a 3D modeling
program to "draw" your display in three dimensions before using

this procedure.

Step 3: Decide Where to Put the "Control Point"

Even a single screen display has a sweet
spot, and in a normal UT2003 game it is
always located directly in front of the center of
the screen, as shown on the left.

As we'll explain in Step V, below, the distance
from the screen is determined by the field-of-view (FOV)
parameter. Notice that the viewer's the line of sight goes directly from the sweet spot to the
exact center of the screen. It determines the direction of pure forward motion and the
direction the player's weapon weapon fires when the player shoots it.

From now on, we will call the point on the screen where the line of sight intersects the
screen the Control Point.

By extension, a multiscreen CaveUT display also has a control point, usually located on
the center screen, as with the BNAVE and the MiniCave, depicted in the image on the right
above.

For your display, you need to decide where you want the Control Point to be. At this stage,
when you are using the default sweet spot, the view frustums have to be symmetrical,
therefore, the control point has to be in the center of one of the screens. So this exercise is
really about choosing one of the screens, presumably the center screen.

While all symmetrical displays have a default sweet spot, some asymmetrical displays do
also. The BNAVE, with its floor screen active, is an example. As long as you can draw a
perpendicular from the exact center of each screen a common point of intersection, then
the multi-screen display has a default sweet spot.

Step 4: Make Note of the "Line of Sight"

The "line of sight" starts at the sweet spot, goes through the control point, and continues
onward into the virtual space. In that sense it is like the view frustum. Discussions later on
this page require calculations based on the line of sight.

Step 5: Determine the Field of View (FOV)

For each screen, you need to figure out what its horizontal
FOV angle should be, so the apex of its view frustum will be
located at the sweet spot. The best way to do this is go back
to the drawings you used to determine the default sweet spot.
Then draw a line from the sweet spot to the edge of each
screen. For each screen, calculate the angle between the two
lines going from the sweet spot to its two edges, with

trigonometry. All you need is the width of the screen (assuming an overhead view) and
the distance from the sweet spot to the screen.

While CaveUT does all sorts of things to the computer's display, the engine for the UT2003
game on each computer has no idea all this is going on. It still thinks that it is generating a
view to be shown on an ordinary monitor sitting on someone's desk. For this discussion,
let's call the width of a normal unmodified UT2003 display the "long axis" (because the vast
majority of computer displays are wider than they are tall), with the height of the screen the
"short axis."

Now, one more term: the "aspect ratio" of a display is just the ratio of its height and its
width, by convention (width / height). In our new terms, that would be the (long-axis /
short-axis). Most commercial displays have a 4/3 aspect ratio (for example, 800x600 or
1024x768).

We will need these new terms because determining the right FOV gets a bit more
complicated when the screens are sideways, as they are in the MiniCave, the V-Cave and
the BNAVE (except the floor.) The CaveFOV parameter in cave.ini allows you to set the
game's generic FOV setting. This allows you to set the FOV of the long-axis, at which point
the game will calculate the FOV of the short axis to be just right so the display's aspect
ratio stays the same.

For example, setting the long-axis FOV to 90 degrees will automatically set the short-axis
to 53.13 degrees.

This formula shows the relationship between the long-axis and short-axis FOVs:

tan(L) = A * tan(S) Where:

L = (Long Axis FOV) / 2
S = (Short Axis FOV) / 2
A = (Long Axis Length) / (Short Axis Length)

From this, you can calculate the short-axis FOV from the long-axis FOV and vice-versa:

S = atan(1/A * tan(L)) L = atan(A * tan(S))

http://aleph0.clarku.edu/~djoyce/java/trig/

For example, the diagram on the right depicts an overhead view of
the MiniCave. Because the screens are turned sideways, the 60-
degree FOVs in the drawing are short-axis FOVs. So what does the
long-axis FOV have to be so we can get a 60 degree short-axis
FOV?

S = (Short Axis FOV) / 2 = 60/2 = 30 degrees

A = (Long Axis Length) / (Short Axis Length) = 1024/768
= 4/3

L = atan(A * tan(S)) = atan((4/3) * tan(30)) = 37.59
degrees

(Long Axis FOV) = 2 * L = 2 * 37.59 = 75.18 degrees.

Set the CaveFOV parameter in cave.ini to 75.18 degrees to get a short-axis-FOV of 60
degrees.

Step 6: For Each Screen, Determine the Roll, Pitch and Yaw

If you have a screen directly in front of the user, as
with the BNAVE and the mini-cave, keep its Roll,
Pitch and Yaw values zero. The screen is already
where it needs to be. Each change of the other
screens' views will be created by starting with the
(virtual) front view and rotating it until it matches the
its intended physical screen.

For example, in the BNAVE, the image on the right
screen view would start out being the same as on the
front screen. The user would rotate the view frustum around the default sweet spot by
+80.5 degrees, as shown in the diagram on the right. A negative value, like -80.5, turns the
view to the left. You are actually rotating the virtual line of sight until it intersects with the
center of the side screen.

Set the Pitch (up-down) in the same way as the Yaw. For example, the floor screen image
in the BNAVE is produced by setting the pitch to -90 degrees. Alternatively, setting it to
+270 would have the same effect.

Set the Roll. This will rotate the entire scene, on the flat screen, around the control point.
This is especially handy when you want an individual screen to be taller than it is wide. All
of the vertical screens in the BNAVE, the mini-cave, and the V-Cave are this way. Positive
numbers rotate the scene clockwise, negative numbers rotate it counter-clockwise.

For example,

CaveRoll=90.0

will turn the scene sideways, as shown on the right. Or, you can
rotate the image counter-clockwise with:

CaveRoll=-90.0

which will also turn the scene sideways, but in the way shown on the left.

Step 6: For Each Screen, Set the cave.ini Values

Open cave.ini in a text editor and change the values for the CaveRoll, CavePitch,
CaveYaw, and CaveFOV parameters to the values you determined. All angles are
measured in decimal degrees.

When you are doing this for the first time, it's worthwhile to play around with these values,
just to get a feel for what the changes look like. You will be amazed at how much
difference a single degree can make. Save the file and the changes will be visible the next
time you use that client to connect to the server.

Final note: be sure to use a text editor that will write the cave.ini file in text-only form.
Notepad is good for this.

Step 7: Fine Tune the View Rotations

At this point, you should have a single contiguous view of the virtual space. If you eye is
not at the sweet spot, things on-screen will look bent where the screens meet, but that's
normal. The main thing to look for at this point is how well the images line up where the
screens meet. They will probably be off a bit because of small, unavoidable irregularities in
the physical setup.

You can fine-tune the Roll-Pitch-Yaw values on any individual screen from the keyboard
for that machine. To do this, start CaveUT/UT2003 on your server and client machines,
and be sure to click the clients' fire buttons. The help menu will only appear on a client
machine when movement on its display is locked to the server's controls. In other
words, you have to have CaveUT fully engaged and working, otherwise the debug menu
simply won't appear.

Debug keyboard commands are:

Shift+h Show debug menu
Ctrl+h Hide debug menu

Shift+a Add increment offset X
Ctrl+a Subtract increment offset X

Shift+s Add increment offset Y
Ctrl+s Subtract increment offset Y
Shift+d Add increment offset Z
Ctrl+d Subtract increment offset Z

Shift+z Add increment rotation pitch
Ctrl+z Subtract increment rotation pitch
Shift+x Add increment rotation roll
Ctrl+z Subtract increment rotation roll
Shift+c Add increment offset yawchanged
Ctrl+c Subtract increment offset yaw

The first two commands just toggle the debug menu on and off. The third set allow you to
add or subtract a numeric value called "increment" to/from Roll Pitch or Yaw with a single
keystroke. Press the key more times to get a bigger change. Play around with these to get
a feel for what the changes look like.

The second block of commands allows you to add a permanent offset to the client's
viewpoint with respect to the player's view on the server.

The X, Y and Z refer to the coordinate axies of the game. The X axis governs left-to-right
movement. The Y axis governs up-and-down movement. The Z axis is depth, or forward-
back.

Try to avoid using the offset adjustments, because they can be problematic. First, if you
have even a small offset, it is possible to put the view though a wall just by pressing the
server-player up against that wall. Second, the apparent shift in the display will be greater
for objects up close than for far-away objects, which can be terribly confusing and
ineffective.
 Strictly speaking, you don't need the offsets. It's always possible to get the screens to line
up with each other just by using the rotations and the zoom feature on the projectors. Still,
there are times when the offsets are too handy to ignore.

The values of "increment" are stored in the last part of caveut.ini:

[CaveUT.CaveUTInteraction]
RotateIncrement=0.500000
OffsetIncrement=1.000000changed

As you might guess, you can adjust the size of the change simply by editing these values
and saving cave.ini. You will be amazed at how much difference a single degree can
make, especially with Roll.

The changes made with the keyboard will be saved automatically when you exit UT2003.
The numeric value of each keyboard parameter will be added to the corresponding
parameter in cave.ini. Alternatively, you can change the cave.ini parameters manually, but
you have to stop and restart the client each time, which is an inefficient use of effort.

 Note: When CaveUT saves the offset values, it also writes a lot of other irrelevant material
to the cave.ini file. This material is harmless and you can delete it if desired. Just be sure
not to eliminate any of the CaveUT parameters.

So now you need to fine-tune the rotations and other parameters to make all the screens
line up. It is usually best to tweak the center screen's configuration until it looks the way
you want it to (which sometimes call for no changes at all), then line up all adjacent
physical screens next to it, then fine-tune the rest.

Step 8: (Optional) If You Are Happy With the Default Sweet Spot, Then You Are Done

Otherwise, follow instructions in the next section.

Tip

Every time you edit CaveUT.ini, open it in your text editor, then close it when you are done.
Many text editors will not allow another program to change the file while it is open for edit,
so CaveUT will not be able to save your fine-tuning adjustments if the file is open in
another program. Some text editors allow this (i.e. Notepad) but that can be confusing.

Next: VI. Configure Perspective Correction

Previous: IV. Read This: Perspective

Start: Back to Page Index

Last updated January 16, 2004.
URL: http://www.planetjeff.net/ut/CUTInstall5.html

This page is copyright © 2004 by Jeffrey Jacobson.
See this web site's copyright notice for information

on duplicating or distributing this page or its
contents.

mailto: jeff@planetjeff.net

VI: Configure Perspective Correction

This section describes how to put the sweet spot anywhere it is desired, as long as it
is within view of the multiscreen display. This is accomplished with with certain
parameters shown in the CaveUT.ini file. They are shown highlighted here:

[CaveUT.Spectator]
CaveRoll=0.000000
CavePitch=0.000000
CaveYaw=0.000000
CaveOffsetX=0.000000
CaveOffsetY=0.000000
CaveOffsetZ=0.000000
CaveFOV=100.000000
OffAxis=No
FOVleft=-45
FOVright=45
FOVtop=36.87
FOVbottom=-36.87

[CaveUT.CaveUTInteraction]
RotateIncrement=0.250000
OffsetIncrement=0.500000
FOVIncrement=0.500000

In other literature, this technique of producing a "lop-sided" projection is referred to
as "off-axis projection."

As with the other parameters, they only govern the one display for the computer it is
installed on. For this capability, CaveUT depends on VRGL, a generic package for
perspective and other VR related visual effects.

Step 1: Set OffAxis=Yes

This will activate CaveUT's perspective effects. When OffAxis=No, the values in
FOVleft, FOVright, etc., do not matter.

Step 2:
Read This:
What the
Four
"FOV..."
Parameters
Do

The four
perspective
parameters,
FOVleft,
FOVright,
FOVtop,
and
FOVbottm,
refer to the left, right, top and bottom sides of that display, as shown to the right.
The frustum in pink shows the original, unmodified, view. Both views share a single
view axis, which is the shortest perpendicular from the eye to the screen. In the
unmodified view it is in the exact center of the screen. In the modified view, it is off-
center, because the frustum is deliberately lop-sided, as specified by the
perspective parameters.

For example, FOVtop is the angle, in degrees, between the view axis and the center
line of the top edge of the frustum. For a more technical description of how this
works, look at the documentation for VRGL.

In the default CaveUT.ini, shown above, note how FOVleft is negative, while
FOVright is positive. (By convention, left is the negative direction while right is the
positive direction, like clockwise and counterclockwise.) For the view axis to actually
intersect the screen, FOVleft must always be negative while FOVright is always
positive. Similarly, FOVtop is positive and FOV bottom is negative.

It is sometimes desirable to make both parameters positive or negative to produce
an extremely skewed view frustum, a more advanced use which is described at the
end of this section. In other literature, this technique of producing a "lop-sided"
projection is referred to as "off-axis projection."

Warning: If you enter values that make no sense, such as getting the positive/
negative signs backward, UT2003 will start, but it will produce visual nonsense. To
exit the game, press the back quote key, "`", type "quit" and press return.

Step 3:
Compute
and Set
the
FOV
Parameters
for
Each
Screen

Go
back to
your
diagram
for your
multiscreen
display,
add the
new
sweet
spot,
and
compute
the
FOV
angles
using
trigonometry.
For
example,
the
image
on the
right shows a diagram of the BNAVE and the measurements for the right screen.
The blue line roughly represents the viewer standing in the BNAVE, where the top
of the line is the sweet spot. The Left/Right/Bottom/Top markings on the right side
screen show what the game engine on that PC thinks is going on.

As you can see, the display is physically rotated so the "Right" side is actually on
top, etc. This notation is somewhat confusing, but allows us to keep track of what
amounts to disinformation we are providing to the game engine -- disinformation
which must remain consistent.

The shortest perpendicular from the sweet spot to screen is shown in red, 43.7"
long. That angle between it and the rightmost edge of the screen is 20.11 degrees.
(21.11 deg = atan(16/43.7)) That edge is the "bottom" of the normal view screen,

as far as the game engine is concerned, so in CaveUT.ini, FOVbottom=20.11.
Similarly, FOVright=35.59, FOVleft=56.09, FOVtop=47. Study the
diagram and make sure you understand why.

For the BNAVE, the perspective parameters are much the same, but with the
parameters reordered or their signs reversed. It depends on which way the screen
was rotated.

Two more diagrams complete the example. The first one diagrams the angles for
the front screen and the second diagrams the floor screen.

Step 4: Compute and Set the CaveFOV
Parameter

The CaveFOV parameter tells the UT2003
game engine how much of the virtual world to
render (that is, to calculate what game-world
shapes should look like and make the
information available to the display.) With the
perspective effects turned off, CaveFOV it
also determines the dimensions of the user's
view frustum from the real and into the virtual
world, so the engine only has to render just

enough to accurately fill the viewer's display.

But when the perspective functions are active, (OffAxis=Yes), CaveUT directly
controls the dimensions of the main view frustum. It is easy to show more of the
virtual world than the engine thinks the viewer is seeing. This results in gaps in the
display, where some or all of the visible objects are missing, as shown in the
diagram above and to the right. In that example, CaveFOV=60, RightFOV=30
(these numbers are correct), but LeftFOV=45, leaving a 15-degree area not fully
rendered.

The solution to this problem is to
simply make CaveFOV large enough
to accommodate the CaveUT-
specified view frustum. In the
example on the left, CaveFOV=90,
so the left half of the rendered view is
45 degrees -- large enough to the
accommodate the part of the display
specified by FOVleft. Note that the
right half is also 45 degrees, which is
more than what is needed. The

engine renders an additional 15 degrees of the world that will not be shown. There's
no way to avoid this, because the rendering engine will only render for a symmetric
view frustum.

So why not set CaveFOV to some very high value and don't worry about it?
Because the more the engine has to render, the harder it has to work and the
greater the load on the computer -- a waste of rendering speed. In practice, you can
have several displays with significantly different CaveFOV values and not notice a
difference in performance, as with the BNAVE. However, when performance starts
to lag because of a very large virtual word or too many (virtual) people in it,
problems should show up first in the displays with high CaveFOV settings.

Step 5:
Fine-Tune
the
Perspective
Effects

When you
finally
install and
run
CaveUT
on your
multiscreen
display,
CaveUT's
perspective
parameters
will
probably
need some
tweaking.
You need
to carefully
measure
the
physical
dimensions
of the
physical
display
and
account for
any
discrepancies between that and your original diagram. For example, the image
projected onto the right side of the physical BNAVE is elongated by a good four
inches, an unfortunate side-effect of the optical setup. To make it fit, the current
operators of the BNAVE simply run that extra four inches off the top of physical
screen. The effect is a negligible loss of resolution on the right side and a small but
important lengthwise stretching of the image.

The best way to compensate for this error in CaveUT is to recompute the FOVtop
parameter, using the area of the projection itself, rather than that of the physical
screen, as shown in the diagram on the right. The original FOVright was atan
(31"/43.7") = 35.59 , while the new one is atan((31"+4")/43.7")
= 38.69" Doing this makes the image look right, missing only a little bit of
resolution.

Side Note: This is a small demonstration how CaveUT can handle rectangular
displays of arbitrary dimension and placement.

It is very important make these types of perspective adjustments, because you will
not be able to compensate for them with the rotations or offsets. In fact, if you are
absolutely unable to make the screens line up using the keyboard fine-tune
adjustments, it is a sure sign that you need to recalculate the perspective
correction. There are no keyboard incremental adjustments for the perspective
parameters -- you have to recalculate them and change the values in CaveUT.ini.

Advanced Usage: Making a Very Skewed View Frustum

Situations crop up in which the main view axis for a screen does not intersect the
screen itself.

In the example diagrammed on the left, three screens are used to make one, flat,
composite display. The two side screens can only be viewed an oblique angle. To
make them show the virtual world in a visually naturalistic way, the perspective
correction has to be rather severe. All of the FOV parameters are calculated as
before, using the shortest perpendicular from the sweet spot to the plane in which
the view screen lies. In fact, it was never necessary for this perpendicular to
intersect the screen itself, it just happens to be that way for the screens in the
BNAVE example, above.

In this example, FOVleft will be positive thirty degrees, while FOVright a positive 49
degrees. FOVleft can be positive, just so long as FOVright is larger. FOVtop and
FOVbottom could be manipulated in exactly the same way to skew the view frustum
vertically.

Next: Controlling CaveUT From a TCP Socket

Previous: V. Configure View Rotations and Offsets

Start: Back to Page Index

Last updated January 16, 2004.
URL: http://www.planetjeff.net/ut/CUTInstall6.html

This page is copyright © 2004 by Jeffrey Jacobson.
See this web site's copyright notice for information

on duplicating or distributing this page or its
contents.

mailto: jeff@planetjeff.net

Controlling CaveUT From a TCP
Socket

GameBots is
another freeware
Unreal
Tournament
modification
intended for
scientific
research. Once
installed, it allows
the researcher to
open a standard
TCP connection
to Unreal
Tournament
server which
causes a human
figure, a "bot", to
appear in the
virtual world. This
bot can be
controlled
through
commands sent
to GameBots
over the TCP connection from some sending program. The sending
program can be written in any language capable of opening TCP
sockets. One could even use Telnet, though this is recommended
only for debugging purposes.

Spectator mode in UT can "watch" a bot created by GameBots.
Therefore, you can install GameBots on your UT server along with
CaveUT and effectively control the display over the TCP connection

http://www.planetunreal.com/gamebots/

just by moving the bot! You can also create more bots (which can
look like anything) and can be controlled over their own TCP
connections.

This allows you to write your own software to present a wide range of
visual experiences and interactive designs.

For example, UT/GameBots/CaveUT and LabView have recently
been used to instrument an experiment in the BNAVE, with help from
Dr. Patrick Sparto and Leigh Mahoney. Lab View is a software
package used by many experimental scientists to perform data
acquisition and instrument control for lab experiments. It can be used
to control actuators, read sensors, and execute programs written in its
built-in scripting language.

At the appropriate times during the experiment, the experimenter ran
a Lab View script that sent commands to the operator PC's UT
installation. The diagram to the right summarizes the setup.

The only drawback is that the TCP connection is slow compared to
the graphics rendering, so there's a small time lag from when the
command is issued to the bot performing its action. This is fine for
general commands like "follow this person" or "go find the flag," but
using it for animation can be a bit clumsy.

The UT2003 version of GameBots is still under development, but it is
serviceable.

Next: Interface Options

Previous: VI. Configure Perspective Correction

Start: Back to Page Index

http://usl.sis.pitt.edu/PlanetJeff/IndexDownloads/VRST-2001.pdf

Last updated January 16, 2004.
URL: http://www.planetjeff.net/ut/CUTControl.html

This page is copyright © 2004 by Jeffrey Jacobson.
See this web site's copyright notice for information

on duplicating or distributing this page or its
contents.

mailto: jeff@planetjeff.net

Interface Options

The two-walled UT-Cave setup was demonstrated at the Ultra Unreal
gamer convention (19-21 July 2002). This was the first time the
CaveUT 1.2 software had any serious use and the first time CaveUT
had been used by large numbers of gamers. There, expert players
such as Ian MacKechney helped experiment with different control
strategies.

Interestingly, most of the UT players at Ultra Unreal use keyboard and
mouse, but that's not an ideal option for a CaveUT setup. For normal
usage, it would be necessary to construct a platform to hold the
interface devices, and the platform's physical presence would partially
separates the player from the visual display, degrading the
experience.

Standard implementation of the UT-Cave used a MacAlley USB
Airstick for the PC bought in the summer of 2001. This is essentially a
joystick which works normally, but without a physical base. Instead, it
uses built-in accelerometers to detect tilt, allowing the player to simply
hold it in mid-air. The control settings for to enable this device are
(Unreal Tournament Main Menu | Preferences | Controls):

Fire: Joy-5
Alternate Fire: Joy-6
Move Forward Joy-4
Move Backward Joy-1
Strafe Left Joy-3
Strafe Right Joy-2
Jump: Joy-7 or Joy-8
Crouch/Down JoyPovDown
Joystick X-Axis Turn Left/Right
Joystick Y-Axis Look Up/Down

http://ultraunreal.com/
mailto:gloric@hotmail.com

Previously, the Gravis Destroyer game pad worked reasonably well,
and seemed to be easier to learn. But it lacked the analog control a
joystick offers, making targeting a little bit more difficult.

Obviously there are many other interface options.

Next: Tips and Tricks

Previous: Controlling CaveUT From a TCP Socket

Start: Back to Page Index

Last updated January 16, 2004.
URL: http://www.planetjeff.net/ut/CUTInterface.html

This page is copyright © 2004 by Jeffrey Jacobson.
See this web site's copyright notice for information

on duplicating or distributing this page or its
contents.

mailto: jeff@planetjeff.net

Tips and Tricks

When setting up CaveUT, try turning off spectator mode, turn on the
HUD and make sure the crosshairs are visible. The crosshairs mark
the vanishing point of the screen image. Use that for calibrating your
off-axis projections and/or view rotations.

Instead of the crosshairs for targeting, which are turned off in
CaveUT, tape a penny or similar marker onto the screen where the
weapons fire is focused. In a typical two-walled V-Cave, this is about
two-thirds of the way up from the bottom along the central seam.

One of the things about CaveUT that amazes many programmers
familiar with multiscreen displays is that CaveUT makes no attempt to
synchronize the updates in the multiple screens, commonly known as
"genlock". Each screen just updates as fast as it can. As long as all
the screens can update at 30 frames per second or faster, the viewer
will never notice. If performance begins to lag, however, there will
often be situations where one screen has updated because the view
moved or rotated, but another did not, causing a visual disconnect
between the two screens. In practice, this will not be a problem as
long as the machines are offering fast performance. (Note that
genlock is required for stereoscopic displays, and CaveUT/UT2003 is
not yet stereoscopic.)

Next: Packing A Portable CaveUT For Air Travel

Previous: Interface Options

Start: Back to Page Index

Last updated January 16, 2004.
URL: http://www.planetjeff.net/ut/CUTTips.html

This page is copyright © 2004 by Jeffrey Jacobson.
See this web site's copyright notice for information

on duplicating or distributing this page or its
contents.

mailto: jeff@planetjeff.net

Packing A Portable V-Cave For Air
Travel

The picture to the right shows the entire
two-walled V-Cave, computers
projectors, screens and all, packed into
travel bags. It can be carried as
standard airline luggage, with 50 lbs.
(about 23 kg) and several cubic feet of
extra capacity in the bags for personal
items. Everything fits into the standard
dimensions of check-through and carry-
on luggage for airline flights in the
continental United States, without incurring an extra fee for oversize
or overweight luggage.

Roughly, the four pieces are:

Green Bag

This bag contains everything for the portable screens: the screen
materials, the PVC pipes, the joiners, the clamps, the carpet seam
binders, and the rope. Altogether it weighs about 65 lbs. (about 30
kg). On the last occasion the V-Cave was transported this way, in
April of 2002, all of the U.S. air carriers had a 70 lb. (about 32 kg)
weight limit for check-through bags and a 62" (about 157 cm) limit for
total bag dimensions (height, width and length of the check-through
bag could add up to no more than 62"/about 157 cm).

Black Bag

This bag contains the tripods, network hub and cables, power cables
and strips, tape, glue, plastic hammer, and personal effects not

related to the V-Cave. It weighs in at 50 lbs. (about 23 kg). Clothes
make excellent packing material, especially for the tripods.

Green Suitcase

This bag contains the two projectors
and their laptops, and, because of the
delicacy of this equipment, was a
carry-on bag.

Because the laptops were large ones,
the case was just barely within the
limits for a carry-on bag for the air
carrier being used (those limits, in
April 2002, being 10"x13"x22" or about
25 cm x 33 cm x 56 cm) and a 50 lb.
(about 23 kg) limit.

Unfortunately, the rules for carry-on
baggage vary from one air carrier to
the next. Check with the air carrier you
intend to use before transporting a V-
Cave this way. It's also possible to
select your components in order to
minimize the likelihood of problems:
Buy smaller laptops, compact projectors, and so on.

Black Shoulder Bag

This bag contains the third laptop and some reading materials. It's
small enough to constitute a "personal item" rather than a "carry-on
bag" as defined by most U.S. air carriers, which is useful, as many air
carriers permit a total of one carry-on and one personal item.

Important Note

It's useful to remember that you should choose luggage that is rated
for the weight of the gear you'll be carrying. Low-cost luggage,
especially soft-side luggage, is far more likely to split when being

used to haul heavy loads across long distances. We've had good luck
with hockey bags, lately.

Next: Safety And Motion Sickness

Previous: Tips and Tricks

Start: Back to Page Index

Last updated January 10, 2004.
URL: http://www.planetjeff.net/ut/CaveUT.html

This page is copyright © 2004 by Jeffrey Jacobson.
See this web site's copyright notice for information

on duplicating or distributing this page or its
contents.

mailto: jeff@planetjeff.net

Safety and Motion Sickness

It shouldn't surprise anyone that players and operators of a CaveUT
setup can experience motion sickness. Players who are particularly
sensitive should be warned that they can develop a headache or
nausea which could last a while.

Players who are unsteady on their feet for any reason should be
advised to sit while using the cave.

When showing a CaveUT setup to anyone who has not used
immersive virtual reality before, the operator should stand near to
them initially in order to assist them if they become dizzy.

In an institutional or other lawsuit-conscious setting, operators may
wish to implement stronger safety measures, such as the safety
harness in the BNAVE, and legal waivers may be advisable.

Next: Known Issues

Previous: Packing A Portable CaveUT For Air Travel

Start: Back to Page Index

Last updated January 16, 2004.
URL: http://www.planetjeff.net/ut/CUTSafety.html

This page is copyright © 2004 by Jeffrey Jacobson.
See this web site's copyright notice for information

on duplicating or distributing this page or its
contents.

mailto: jeff@planetjeff.net

Known Issues

The CaveUT Mutator tends to write a lot of extra information into
CaveUT.ini when it saves the view rotation and offset adjustments.
This may be annoying, but it is but harmless. With luck, future
implementations of CaveUT will eliminate this issue.

Animated 2D images that depict 3D shapes (billboards) don't look
right in CaveUT. Examples include the background in CTF-Face,
fires, and weapons when they are spinning on the ground, waiting to
be picked up. These images and animations are pasted onto 2-D
surfaces located in the 3D virtual world. As a result, the CaveUT
hacks cannot change the way the objects in that image look, because
they are already rendered. In fact, if such an image falls across the
intersection of two screens, its two parts will not line up. This is not so
much a bug as an inherent limitation with billboards in 3D engines,
and remains a problem for all versions of CaveUT.

There is a long standing bug (or feature) in UT's spectator mode
(v432, v436, UT2003) which makes rotations in CaveUT jerky. From
the perspective of many players, about 1/3 of a second passes
between the time a player starts to rotate and the time the spectator's
view begins to rotate. Then the spectator's view jumps into the correct
position, creating a visual jerk. Strangely, when the player uses an
analogue input device such as a mouse or joystick, the rotations are
much smoother, but still not as smooth as they should be.

Always be sure to use 32-bit color depth in UT's video preferences.
For some reason, this approach greatly reduces problems with
coplanar polygons in some virtual worlds. When this parameter is
changed, UT will typically crash, but when restarted the program will
function correction with the new parameter in place.

Next: Improvements Needed

Previous: Safety and Motion Sickness

Start: Back to Page Index

Last updated January 16, 2004.
URL: http://www.planetjeff.net/ut/CUTIssues.html

This page is copyright © 2004 by Jeffrey Jacobson.
See this web site's copyright notice for information

on duplicating or distributing this page or its
contents.

mailto: jeff@planetjeff.net

Improvements Needed

Care to help? CaveUT is a completely open-source effort, protected
under Epic Games' GPL agreement. It remains a work in progress,
and the community developing CaveUT hopes that people in the
Unreal community are interested in developing CaveUT further.

At some point, the CaveUT team will be ready to setup a Source
Forge or equivalent project. In the meantime, we are happy to post
patches and/or additions to CaveUT, and to help anyone who wants
to work on them.

Among CaveUT's needs:

Develop More and Better Control Interfaces

There can never be enough testing and innovation on controls for
CaveUT. Our most pressing need is to to separate firing direction
from movement direction; options that have been suggested include
using a head tracker, moving with a separate device (perhaps hand-
held or foot-controlled), and performing weapon targeting with a third
control.

Introduce a Spherical Correction

It's not readily apparent from the lovely shot of the Earth Theater, but
CaveUT has a problem with that display, because the theater's
screens are curved rather than flat. Currently, CaveUT works by
simply carving out a section of UT's (flat) display.

01/22/04 Willem De Jonge has just completed preliminary code for a
spherical correction. We hope to include it in CaveUT2004

Real Time Head Tracking

This task would require a real-time data stream from the head tracker

http://www.planetjeff.net/ut/CaveUT_Images/CaveUT2003InET_MED.jpg

to both VRGL and the UT2003 code. In the game code, the tracker
could simply move the player as any other game peripheral would.
The hacked OpenGL library (VRGL) would have to open a socket to
receive the offsets from the tracker driver. Simple, in theory, but not a
small amount of programming....

Stereographic Display

One of the ways we perceive depth in the real world is through the
fact that each eye sees the world from a slightly different angle. Out to
a distance of about eight feet, the human brain is able to calculate the
distance from your eyes to any object using this disparity.

Stereographic displays effectively project both the right and left eye
views onto some virtual scene. Special glasses separate the images
for the viewer so that each eye sees the scene meant for it.

Marc LeRenard got preliminary stereo working for CaveUT 1.2,
recently (01/15/04). Once it is debugged and doucmented we will
make it available on this site.

Next: Ownership and Distribution

Previous: Known Issues

Start: Back to Page Index

Last updated January 16, 2004.
URL: http://www.planetjeff.net/ut/CUTImprovements.

html
This page is copyright © 2004 by Jeffrey Jacobson.
See this web site's copyright notice for information

on duplicating or distributing this page or its contents.

mailto: jeff@planetjeff.net

Ownership and Distribution

CaveUT

Use of the CaveUT 2003 Mutator is covered by the End User
Licencse Agreement distributed with the game itself.

Generally, anybody can use the mutator and anybody can change it,
but all versions of the mutator must remain available to the public.
Epic Megagames holds the exclusive right to generate revenues from
use of the mutator and all its modifications, either through direct sale
or paid use.

That said, Epic has traditionally been enthusiatically supportive of
academic and scientific research, in general. They have been
particularly friendly to the CaveUT project.

For more information on licensing issues, contact mrein@epicgames.
com.

This Documentation

All text and images at this web site and pertaining to the CaveUT
software -- with an exception noted immediately below -- are
copyright © 2004 by Jeffrey Jacobson, who grants permission to copy
and distribute the text and image files associated with them so long
as they remain unmodified and are distributed together. All other
rights are reserved.

The web page titled VRGL is not covered by this copyright notice.
Though CaveUT 2003 makes use of VRGL, VRGL is a separate
package covered by its own LGPL license. It is in no way to be
considered a part of UT2003. Information about rights related to that
page appear on the page itself.

mailto:mrein@epicgames.com
mailto:mrein@epicgames.com

Next: Credits

Previous: Improvements Needed

Start: Back to Page Index

Last updated January 16, 2004.
URL: http://www.planetjeff.net/ut/CUTOwnership.

html
This page is copyright © 2004 by Jeffrey Jacobson.
See this web site's copyright notice for information

on duplicating or distributing this page or its
contents.

mailto: jeff@planetjeff.net

Credits
Personal Contributors in reverse alphabetical order:

Joe Manjlovich: Designed the CaveUT2003 Mutator and the Linux
version of CaveUT 1.2.

Willem de Jonge: Willem wrote VRGL, a modified OpenGL library
package upon which CaveUT2003 depends. VRGL accomplishes
view rotation math for the CaveUT Mutator.

Jeffrey Jacobson: CaveUT was his big idea; general design and
project management, testing and integration; provided content and
wrote the rough draft of this web site; performed view rotation
mathematics and wrote OpenGL code for CaveUT 1.1.; performed the
physical design of the V-Cave design and provided instructions for
replicating it.

Zimmy Hwang: Wrote game code and provided general help with
CaveUT version 1.1.

Aaron Allston: Edited the web-based documentation.

Institutional contributors in reverse alphabetic order:

Ken Sochats and his Visual Information Systems Center:
Sochats' lab's contribution to CaveUT lies mainly in the fact that they
have used it extensively, becoming very helpful in debugging
CaveUT. In addition, they built the desktop-sized MiniCave and their
own portable V-Cave, demonstrating them all over the Pennsylvania,
have loaned Jeffrey Jacobson equipment, and continue to pursue a
number of CaveUT-based projects.

Dr. Mark Redfern and his Medical Virtual Reality Center: Permitted

http://usl.sis.pitt.edu/trurl/index.html
mailto:willem@argcargv.com
http://planetjeff.net/
mailto:zyhst@gwu.edu
http://www.aaronallston.com/
mailto:sochate@sis.pitt.edu
http://visc.exp.sis.pitt.edu/
mailto:redfern@pitt.edu
http://otolaryngology.medicine.pitt.edu/content/mvrc/index.html

Zimmy Hwang and Jeffrey Jacobson to use the BNAVE for
development and testing. By extension, the creation of CaveUT is
partially sponsored by NIH P30 Grant DC05205 through the
Department of Otolaryngology, University of Pittsburgh.

Dr. Michael Lewis and his Useablity Lab: Provided extensive
personal, academic, and material support. By extension, the creation
of CaveUT is partially sponsored by AFOSR contract F49640-01-1-
0542 through the Department of Information Sciences at the
University of Pittsburgh. Thanks also go to everyone else in the
department who have helped in other ways and generally tolerated
Jeffrey Jacobson's creative process.

Epic Games: Wrote an excellent game engine and associated open-
sourced game code.

Start: Back to Page Index

Last updated January 16, 2004.
URL: http://www.planetjeff.net/ut/CUTCredits.html

This page is copyright © 2004 by Jeffrey Jacobson.
See this web site's copyright notice for information

on duplicating or distributing this page or its
contents.

http://www.pitt.edu/~cmlewis/
http://usl.sis.pitt.edu/ulab
http://www.epicgames.com/
mailto: jeff@planetjeff.net

	CaveUT 2003
	Page Index

	First Looks
	If None Of This Sounds Familiar
	Introduction
	Examples of CaveMarc.LERENARD@esiea-ouest.frUT Implementations

	Technical Information
	Hardware and Software Requirements
	Example Physical Setup: The V-Cave
	Software and Downloads
	VRGL 1.0
	How to Install and Configure CaveUT
	I: Install Software on Each Client Computer
	II: Install and Configure the Server
	III: Start CaveUT For the First Time
	IV: Read This: Perspective
	V: Configure View Rotations and Offsets
	VI: Configure Perspective Corrections

	Controlling CaveUT From a TCP Socket
	Interface Options
	Tips and Tricks
	Packing A Portable V-Cave For Air Travel

	Ongoing Considerations
	Safety and Motion Sickness
	Known Issues
	Improvements Needed

	Background
	Ownership and Distribution
	Credits

